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Malignant phyllodes tumors display mesenchymal
stem cell features and aldehyde dehydrogenase/
disialoganglioside identify their tumor stem cells
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Abstract

Introduction: Although breast phyllodes tumors are rare, there is no effective therapy other than surgery. Little is
known about their tumor biology. A malignant phyllodes tumor contains heterologous stromal elements, and can
transform into rhabdomyosarcoma, liposarcoma and osteosarcoma. These versatile properties prompted us to
explore their possible relationship to mesenchymal stem cells (MSCs) and to search for the presence of cancer stem
cells (CSCs) in phyllodes tumors.

Methods: Paraffin sections of malignant phyllodes tumors were examined for various markers by
immunohistochemical staining. Xenografts of human primary phyllodes tumors were established by injecting
freshly isolated tumor cells into the mammary fat pad of non-obese diabetic-severe combined immunodeficient
(NOD-SCID) mice. To search for CSCs, xenografted tumor cells were sorted into various subpopulations by flow
cytometry and examined for their in vitro mammosphere forming capacity, in vivo tumorigenicity in NOD-SCID mice
and their ability to undergo differentiation.

Results: Immunohistochemical analysis revealed the expression of the following 10 markers: CD44, CD29, CD106,
CD166, CD105, CD9O, disialoganglioside (GD2), CD117, Aldehyde dehydrogenase 1 (ALDH), and Oct-4, and 7
clinically relevant markers (CD10, CD34, p53, p63, Ki-67, Bcl-2, vimentin, and Globo H) in all 51 malignant phyllodes
tumors examined, albeit to different extents. Four xenografts were successfully established from human primary
phyllodes tumors. In vitro, ALDH" cells sorted from xenografts displayed approximately 10-fold greater
mammosphere-forming capacity than ALDH™ cells. GD2" cells showed a 3.9-fold greater capacity than GD2~ cells.
ALDH"/GD2"cells displayed 12.8-fold greater mammosphere forming ability than ALDH™/GD2™ cells. In vivo, the
tumor-initiating frequency of ALDH'/GD2" cells were up to 33-fold higher than that of ALDH" cells, with as few as
50 ALDH*/GD2" cells being sufficient for engraftment. Moreover, we provided the first evidence for the induction
of ALDH'/GD2" cells to differentiate into neural cells of various lineages, along with the observation of neural
differentiation in clinical specimens and xenografts of malignant phyllodes tumors. ALDH* or ALDH*/GD2" cells
could also be induced to differentiate into adipocytes, osteocytes or chondrocytes.

Conclusions: Our findings revealed that malignant phyllodes tumors possessed many characteristics of MSC, and
their CSCs were enriched in ALDH* and ALDH*/GD2" subpopulations.
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Introduction
Breast phyllodes tumors (PTs) are rare neoplasms [1],
representing less than 1% of all primary breast tumors in
western countries [2]. However, an incidence rate of
6.92% was reported in a Singaporean study, suggesting
its higher frequency among Asian women [3]. The
World Health organization classified breast PTs into be-
nign, borderline and malignant histopathologically [4].
However, there are occasional discrepancies between the
clinical behavior and histopathological parameters of PTs,
and the progression rate and outcomes of PTs remain un-
predictable [1]. So far, there is no effective therapy other
than surgery [5]. While all grades of breast PTs have the
potential for local recurrence, only borderline and malig-
nant PTs were shown to metastasize to other organs, such
as lungs, bone and liver [6]. The metastatic PTs may show
a resemblance to osteogenic sarcoma, chondrosarcoma,
liposarcoma, leiomyosarcoma or rhabdomyosarcoma [7],
which is attributed to the inherent heterogeneity within the
primary PTs [1]. However, there has been no report of
neural differentiation of malignant PTs. The versatile prop-
erty of PTs to convert into various sarcoma types is remin-
iscent of the features of mesenchymal stem cells (MSCs). It
has been well-documented that MSCs may differentiate
into adipocytes, osteocytes and chondrocytes [8]. Subse-
quent studies demonstrated that MSCs can even be in-
duced to neuron-like cells differentiation [9]. This led us to
hypothesize that malignant PTs may possess MSC-like
properties. Recently, GD2, a disialoganglioside has been
identified as a marker for stem cells of MSCs [10] and
breast cancer [11]. It will be of interest to determine
whether GD2 is expressed in PTs and their stem cells.
Cancer stem cells (CSCs) have the capacity to create
bulk tumors through self-renewal and differentiation
[12]. A successful cancer therapy must thus eliminate
these cells. The identification and isolation of CSCs thus
become important in the treatment of malignant PTs.
Although several markers have been successfully used to
enrich cancer stem cells from various cancers, CSC
markers for PTs have yet to be deciphered. In this study,
we investigated the expression of a variety of markers in
malignant PTs and searched for CSC markers for PTs.

Methods

Clinical specimens of malignant PT

All human breast cancer specimens were obtained from
patients with malignant PT who had undergone initial
surgery at the Tri-Service General Hospital (Taipei, Taiwan),
National Taiwan University Hospital (Taipei, Taiwan),
Chunghua Christian Hospital (Chunghua, Taiwan). Samples
were fully encoded to protect patient confidentiality
and were utilized under a protocol approved by the
Institutional Review Board of Human Subjects Research
Ethics Committees of Academia Sinica (Taipei, Taiwan)
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and collaborating medical centers. We have confirmed
that informed written consent was obtained from those
patients who provided fresh tumor specimens and that
the IRB exempted the informed consent from patients
who provided paraffin-embedded tissue sections.

Animal model

Female NOD-SCID (non-obese diabetic-severe com-
bined immunodeficiency; Tzu Chi University, Hualien,
Taiwan mice were purchased from Jackson Lab, Bar
Harbor, ME, USA) and housed under specific pathogen-
free conditions in the Animal Center of the Institute of
Cellular and Organismic Biology of Sinica. We devel-
oped an orthotropic xenograft model as described by
Kuperwasser et al. [13]. Briefly, fat pads were cleared
and injected with a mixture of human primary cancer
cells, human mammary stromal cells and Matrigel (BD
356237, 2.5mg/ml, USA)*. The human mammary stro-
mal cells were obtained from patient BC515 who had
undergone initial surgery. The tumor specimens were
sliced to square (1 mm?) then subjected to enzymatic
digestion by being incubated in RPMI1640 medium con-
taining collagenase (Sigma C5138, 1,000 U/ml, USA),
hyaluronidase (Sigma H3884, 300 U/ml), and DNase I
(Sigma DN25, 100 pg/ml) at 37°C for one hour. After
filtration through a 100-pm cell strainer (BD Biosciences,
USA), primary breast tumor cells were collected and
resuspended in RPMI1640 medium supplemented with
5% FBS, and then injected into mammary fat pads of
NOD-SCID mice. The animals were monitored weekly for
tumor growth. Tumor cells from the xenografted mice
were harvested in a similar manner and injected into other
mice for serial passages. Mice were treated in accordance
with the Institutional Animal Care and Use Committee of
the Academia Sinica guidelines for experiments and
approved by a committee of the same office.

Immunohistochemical analysis

Immunohistochemical analysis was performed on formalin-
fixed paraffin-embedded tissue. Sections (3 pum) on
coated slides were deparaffinized and rehydrated then
subjected to antigen retrieval by autoclave or micro-
wave in alkaline buffer pH9 (antigen Retrieval AR10,
BioGenex, Fremont, CA, USA) for 10 minutes. After
antigen retrieval, sections were treated with H,O, to block
the endogenous peroxidase activity. After washing out the
H,0,, the sections were incubated with diluted primary
antibodies as indicated by the manufacturer at room
temperature for one hour, followed by staining with Super
Sensitive Polymer-HRP Detection System (BioGenex),
counter-staining with Mayer’s hematoxylin and mounted in
glycerin. The primary antibodies used included the follow-
ing: CD44 (DF1485, DAKO, USA), CD29 (O.N.98, US
Biological), CD106 (3H1814, US Biological), CD166 (MOG/
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07, Novocastra, USA) CD105 (SN6h, DAKO), CD90 (3F102,
US Biological), GD2 (14G2a, Bio Technetics, San Diego,
CA 92121), ALDH1 (44/ALDH, it recognizes all ALDH1
isoforms, BD, USA), Oct-4 (240408, Santa Cruz, USA),
CD117 (polyclonal c-Kit, DAKO), CD10 (56C6, BioCarta,
USA), P53 (DO-7, DAKO), P63 (4A4, DAKO), Ki-67
(MIB-1, DAKO), bcl-2 Oncoprotein (124, DAKO), Globo-
H (MBrl, ALEXIS, USA), CD34 (QBEnd 10, DAKO),
vimentin (Vim3B4, DAKO), collagen type II (polyclonal: 1
fibrillar collagen NC1 and 1VWEFC, Abcam, UK), nestin
(196908, R&D and polyclonal, Santa Cruz Biotechnology,
USA), BlII-tubulin (Tuj-1, R&D and polyclonal, Millipore,
USA) and glial fibrillary acidic protein (GFAP) (273807,
R&D and polyclonal, Millipore). Sections were examined
by pathologists.

Immunofluorescent staining

Cells were fixed in 4% paraformaldehyde at room
temperature for 10 minutes. Primary antibodies were used
at the dilutions suggested by the manufacturer. Cells were
permeabilized with a permeabilization buffer (eBioscience)
before staining with ALDHI, collagen type II, nestin, BIII-
tubulin and GFAP. Secondary antibodies (1:100) labeled
with Alisa488, Alisa594, PE or APC were added and in-
cubated for one hour at room temperature. Nuclei were
counterstained with  4',6-diamidino-2-phenylindole
(DAPI). Stained mammospheres and monolayer cultured
cells were imaged on a Confocal Microscope and Single
Molecule detection system (Leica, TCS-SP5-MP-SMD).

Cell sorting and analysis by flow cytometry

Cell sorting and analysis by flow cytometry were per-
formed as described previously [14]. Briefly, 1 x 10 single
suspension cells prepared from xenograft tumor were in-
cubated with a specific antibody on ice for 30 minutes.
The mouse cells were stained with anti-H2Kd (BD
Pharmingen™, 1:200) followed by PECy7-labeled sec-
ondary antibody (Jackson Labs, 1:250) on ice for 20 minutes.
7AAD-perCP5.5 (BD Biosciences, 1:100) was used to
exclude the dead cells. An ALDEFLUOR assay kit
(StemCell Technologies) was used to identify the cells
with high ALDH activity as previously reported [15],
which was treated with specific ALDH inhibitor, diethy-
laminobenzaldehyde (DEAB). BD FACS AriaTMIIU
flow cytometer (Becton Dickinson) was used to sort the
cells and FACSCanto (Becton Dickinson) was used to
analysis the expression of indicated markers.

Mammosphere assay

To evaluate the potential of mammosphere formation
from sorted cells, a density of 1 x 10% cells/ml was plated
in an ultra-low attachment 24-well plate (Corning,
Acton, MA, USA) and cultured in Ham’s F-12 serum-
free medium (BioWhittaker) supplemented with BSA
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(0.4%), B27 (Invitrogen, Carlsbad, CA, USA), basic epi-
dermal growth factor (bEGF) (20 ng/ml), hydrocortisone
(1 pM, Sigma) and epidermal growth factor (20 ng/ml,
BD Biosciences, CA, USA). Twelve days after culture,
the numbers of mammospheres were counted using an
inverted microscope.

Differentiation of human tumor stem cells

Single suspension ALDH* or ALDH"/GD2* (3 x 10°) cells
isolated from PTs (BC-P007, BC-P107 and BC-P515) were
induced to differentiate into adipocytes with reagents, in-
cluding dexamethasone (1 pM, Sigma), insulin (5 pg/ml,
Sigma), isobutylmethylxanthine (0.5 mM, Sigma), and indo-
methacin (60 pM, Sigma). The culture medium was
refreshed once a week for 30 days. For the differentiation of
osteocytes, cells were incubated with ascorbic acid (50 ug/
ml, Sigma), 3-glycerophosphate (10 mM, Sigma), and dexa-
methasone (107 M, Sigma), and observed after 20 days.
For the differentiation of chondrocytes, 1 x 10° cells were
cultured in Dulbecco’s modified Eagle’s medium supple-
mented with Insulin-Transferrin-Selenium (ITS,50 mg/ml,
GIBCO, USA), sodium pyruvate (1 mM, GIBCO), TGE-p
(10 ng/ml, Pepro Tech, Inc.) and dexamethasone (107 M,
Sigma), and the chondrocytes were observed at Day 15.
For neural stem cell, ALDH*/GD2" (5 x 10%) cells were
cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with basic fibroblast growth factor (bFGF)
(5 ng/ml, Pepro Tech, USA), retinoic acid (0.5 uM, Sigma)
and 2-mercaptoethanol (1 mM) at Day 1; cyclic adenosine
monophosphate (cAMP) (1 nM, Sigma) and ascorbic acid
(100 pM, Sigma) at Day 3; cAMP (1 nM, Sigma) and
hydrocortisone (10 pM, Sigma) at Day 5; nerve growth fac-
tor (NGF) (10 ng/ml, Sigma), epidermal growth factor
(EGF) (1 mM, BD), butylated hydroxyanisole (200 puM,
Sigma) and ITS + premix (50 mg/ml, GIBCO) at Day 8.

Special stains

The differentiated adipocytes were confirmed by Oil Red
O staining as reported. Briefly, cells were fixed with 4%
paraformaldehyde and then stained with Oil Red O (0.3%,
Sigma) for 15 minutes at room temperature. Osteoblasts
were confirmed by staining cells with Alizarin Red S
(0.5%, Sigma) for 10 minutes at room temperature. For
chondroblasts, Alcian blue staining was performed.
Cells were stained with an Alcian blue (pH =2.5) kit
(MUTO, Japan) for approximately 15 to 25 minutes at
room temperature. After washing with acetic acid (3%),
Kernechtrot solution was used for a counter stain.

Results

Successful engraftment of primary human PTs in
NOD-SCID mice

Using strategies developed by Dialynas et al. [16] and Yu
(unpublished), fresh surgical specimens obtained from
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four patients with malignant PTs were successfully
engrafted into NOD-SCID mice as illustrated in Figures 1A-D.
For primary BC007 PT cells, the initial engrafted tumor was
harvested on Day 184 after inoculation and serially propagated
in NOD-SCID mice for up to nine generations. It was noted
that the growth rate of the tumors accelerated with each
passage, reaching 1 cm in diameter within 40 days at the
ninth generation. Similarly, primary BC107, BC515 and
BC877 PT cells were xenografted in NOD-SCID mice and
harvested around Day 200. The histological features of
four engrafted tumors, designated as BC-P007, BC-P107,
BC-P515 and BC-P877 as examined by H&E staining were
very similar to their primary counterparts (Figure 1).
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Phenotypic markers of primary PTs and xenografts

Paraffin blocks from 47 individual patients, four fresh
specimens of malignant PT and their xenografted tumors,
were examined by immunohistochemical staining for the
following markers: CD44 (HCAM), CD29 (integrin -1),
CD106 (VCAM-1), CD166 (ALCAM), CD105 (Endoglin),
CD90 (Thy-1) [17-20], GD2 (ganglioside) [11], CD117
(c-kit receptor) [21], ALDH1 [15], embryonic stem cell
marker Oct-4 (Octamer-4 in abbreviation), CD34 [22],
CD10, p53, p63, Ki-67, Bcl-2 [23] and vimentin [24].
Mesenchymal progenitor cell-line HS-5 was chosen as
a control. We found that all markers were detectable in
the 51 malignant PT specimens with the following
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Figure 1 Histopathology of human tumor and xenografted tumors. Histopathology of patient primary tumors, BC007 (A), BC107 (B), BC515
(C) and BC877 (D) and their engrafted tumors (BC-PO07MT2, BC-P107MTT1, BC-P515 MT1 and BC-P877 MT1) were examined by H&E staining 200x.
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frequencies among different patients: GD2 (100%, 51/51)
CD166 (78.4%, 40/51), CD90 (78.4%, 40/51), CD44
(68.6%, 35/51), CD106 (29.4%, 15/51), CD29 (27.4%,
14/51) and CD105 (1.9%, 1/51) (Table 1). Vimentin was
expressed in all tumor specimens, consistent with their
mesenchymal lineage [25]. CD117 was expressed in
70.5% of the malignant PT specimens which is in line
with the report of its expression in 13% and 67%, of
benign and malignant PTs, respectively [26]. Ki-67, a
marker for cell proliferation, was expressed in 82.3% of
the malignant PT specimens. CD10 was detected in
60.7% (positive: 210%) [4] of the malignant PT speci-
mens, which is consistent with the previous report of
its presence in four of six malignant PTs but negative
in all benign ones [4]. Overexpression of p53 was noted
in 50.9% of the malignant PT specimens, including four
fresh tumors as well as their xenografted tumors. Inter-
estingly, the expression of p63, a member of the p53
gene family highly expressed in the basal or progenitor
layers of many epithelial tissues, was observed in 9.8%
of the malignant PT specimens. Bcl-2 expression was
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found in 37.2% of the malignant PT specimens, but not in
the four fresh primary tumors and their xenografted tu-
mors. CD34, a transmembrane glycoprotein expressed on
hematopoietic stem and progenitor cells, endothelial cells,
bone marrow progenitor cells, and many mesenchymal
tumor cells [27], was detected in 52.9% of the malignant
PT specimens. Globo H, a hexasaccharide antigen com-
monly found in breast carcinoma (61 to 80%) [14,28], was
noted in 9.8% of the malignant PT specimens. As summa-
rized in Table 1, results from the immunohistochemical
analysis showed that malignant PTs possess MSC-like
properties and that the four fresh malignant PT samples
and their corresponding xenografts showed largely similar
immunohistochemical profiles as their parent tumors, up
to the eighth passage (Additional file 1: Table S1). Consistent
with their origin from stromal cells, these four primary ma-
lignant PTs, their non-tumor part, and their xenografts
all lacked cytokeratins, but expressed vimentin except
non-tumor parts of patient BC515 (Additional file 1: Table
S2). In addition, we examined the phenotypes of non-
tumor part (515NT and 877NT) by immunohistochemical

Table 1 Expression of various markers in PTs obtained from patients or patient-derived xenografts

% positive cases (n = 51) BC007/ BC107/ BC515/ BC877/ HS-5
(% positive cells) BC-POO7MT1 BC-P107MT1 BC-P515MT1 BC-P877MT1
MSC marker CD44 68.6% 50/60 60/30 -/- -/- +
CD29 274% 10/40 <5/30 5/<1 -/- +
CD166 784% <5/<5 10/50 5/5 90/90 +
CDIo6 294% 30/<10 <10/<10 -/- 80/80 +
CD105 1.9% /- /- -/~ 50/90 +
CD90 784% <10/< 10 10/10 55/75 <5/70 +
cbnz 70.5% -/20 -/- 5/50 80/95 +
GD2 100% 80/50 75/30 90/75 60/30 +
(<10 to >90)
Stem cell marker ALDH 100% 20/1 3-5/<1 40/5 <1/<5 +
(<10 to >90)
Oct-4 47.0% 10/5 30/10 <1/35 <5/<5 +
PT clinically relevant Vimentin 100% 90/>90 90/>70 80/20 >95/>95 +
markers (<10- to >90)
Ki-67 82.3% 40/40 10/20 5/<3 65/>95 +
D10 60.7% 20/5 10/70 5/5 <10/30 +
CD34 52.9% /- 40/70 80/20 /- -
p53 50.9% <10/<10 <5/10 70/60 >95/>95 +
Bcl-2 37.2% /- /- /- -/- -
p63 9.8% 60/10 /- /- /- -
Globo-H 9.8% /- /- /- 80/80 -

Fifty-one malignant PTs were tested by immunohistochemical staining for a panel of 18 markers. The expression level of each marker was scored based on the
positive percentage by stained cells by clinical pathologists. The percentage of all 51 cases expressing each marker is listed in the third row. The xenografted
tumors in NO-SCID mice (BC-PO07MT1, BC-P107 MT1, BC-P515 MT1 and BC-P877 MT1) showed a similar immunohistochemical staining profile for most markers as
did the parental tumors (BC007, BC107, BC515 and BC877). All markers were expressed in malignant PTs. HS-5 (human marrow stromal cell lines) as the control in
this table, the expression level of each marker was classified into two categories, negative (-) and positive (+), by clinical pathologists.
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analysis and showed that their phenotypes were mostly
different from their original tumors and xenografts
(Additional file 1: Table S1).

ALDH" identifies cancer stem cells in malignant PTs
ALDH has been shown to enrich breast stem/progenitor
cells [29]. We thus examined the expression of ALDH in
malignant PTs. As shown in Figure 2A, a small fraction
(7.6%) of the xenografted tumor cells from BC-P007 was
found to be positive for ALDH activities as determined by
an ALDEFLUOR assay. The percent of cells with high
ALDH activity in four xenografted tumors ranged from 3 to
30%. Several lines of evidence indicated that ALDH" cells
displayed features of tumor stem cells. First, the sorted
ALDH" cells spontaneously formed colonies adherent to the
monolayer culture dish (Figure 2B). This phenomenon was
observed in the monolayer cultures derived from all four
xenografts. The colony forming efficiencies for BC-P007
and BC-P515 were approximately 14.1 to 16.6/10° and ap-
proximately 15.5 to 17.5/ 10°, respectively, while those for
ALDH" cells were only approximately 0.8 to 1.6/10° and ap-
proximately 0.11 to 0.23/10° respectively (Additional file 1:
Table S3). Upon trypsinization and replating, the colony for-
mation persisted through serial passages for 20 passages, but
the number of colonies declined gradually with each pas-
sage, along with a reduced growth rate. On the other hand,
the ALDH™ cell population lasted for one or two passages in
monolayer culture only with occasional colony formation.
Secondly, ALDH" cells sorted from BC-P007, BC-P107
and BCP-515 were able to generate mammospheres which
could be propagated for at least 10 passages (Figure 2C).
The average mammosphere forming efficiency (MFE) of
ALDH" cells from BC-P007, BC-P107 and BC-P515 was
19+2.0/1,000 cells as compared to 1.9 +0.5/1,000 cells
for ALDH"™ cells (P <0.0001) (Figure 3D). Using limiting
dilution of ALDH* BC-P515 cells at one cell/well, we ob-
served that a single cell could give rise to mammosphere
formation, supporting its clonal origin (Additional file 1:
Table S4). Curiously, MFE was much higher in the single
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cell experiments (approximately 7.1 to 11.8%) than in the
bulk experiments (2.8%). This suggested that clumping of
cells when seeded in bulk might have accounted for their
lower MFE. Immunofluorescence analysis of colonies in
monolayer culture or mammopheres revealed high ex-
pression of the following markers: CD29, CD44 and
CD166. Interestingly, CD44 appeared to concentrate at
the colony periphery, while CD10, CD29 and CD166 lo-
calized in the center of the colony (Additional file 1: Fig-
ure S1A-C and E-G). ALDH (antibody) positive cells also
congregated at the colony or mammosphere periphery
(Additional file 1: Figure S1D-H).

Lastly, the in vivo tumorigenicity of ALDH" and ALDH™
cells sorted from BC-P007 and BC-P515 xenograft were ex-
amined in NOD-SCID mice. The tumor formation fre-
quency for ALDH" cells (1 in 2 x 10%) from both xenografts
was estimated to be 5- and 21-fold that of ALDH™ cells ( 1
in 1.1 x 10” and 1 in >4.2 x 10°) for BC-P007 and BC-P515,
respectively, as shown in Table 2. Interestingly, ALDH" cells
from monolayer cultures and mammospheres derived from
BC-P007 xenografts were even more tumorigenic than
ALDH" cells freshly sorted from xenografts (Additional file
1: Table S5). As few as 50 ALDH" cells from mammo-
spheres or monolayer cultures were sufficient for tumor en-
graftment (Figure 2D). The frequencies of tumor formation
for cultured ALDH" cells (1 in 53 for monolayers, 1 in 1
for mammospheres) were significantly higher than that
of ALDH" cells sorted from BC-007 xenografts without
culture (P <0.001; P <0.001, respectively; Additional file 1:
Table S5) but there was no significant difference between
the monolayer- and mammosphere-derived ALDH" cells
(P=0.3). On the other hand, the tumor formation fre-
quency of ALDH™ cells derived from monolayers were
significantly lower than that of ALDH + cells (1 in 1.8 x
10° vs. 1 in 53, P <0.001; Additional file 1: Table S5).
Collectively, these findings suggest that ALDH" cells
sorted from BC-P007 and BC-P515 xenografts, were
enriched in PT stem cells, which were further enriched
by in vitro cultures as monolayers or mammospheres.
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Figure 2 Features of ALDH" cell population in monolayer and mammosphere culture. (A) Flow cytometry revealed 7.6% of the
xenografted tumor cells in BC-PO07MT3 (passage 3) were positive for ALDEFLUOR assay. (B) The ALDEFLUOR-positive cells were incubated in a
culture dish, and formed colonies spontaneously (200x). (C) BC-P007 ALDH" cell are capable of generating mammospheres in culture (200x).
(D) As few as 50 ALDH™ harvested from mammospheres (S) or monolayer (M) were sufficient for tumor engraftment. ALDH, Aldehyde
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Figure 3 Characteristics of ALDH*/GD2" cells. (A) The expression of Aldehyde dehydrogenase 1 (ALDH) and GD2 on xenografted BC-P007 cells was
determined by flow cytometry. (B) ALDH/GD2" and ALDH/GD2™ cells were sorted from the xenografted BC-P007 cells and cultured in a mammosphere
condition at 1,000 cells/well of 24-well plates to mammosphere formation. Representative images of mammospheres formed from ALDH'/GD2"
(left panel) and ALDH /GD2"™ (right panel) cells were shown. The distribution of ALDH and GD2 expression on the mammospheres was examined by
immunofluorescent microscopy with ALDH-AF594/GD2-AF488 antibodies. Single confocal sections (C) of mammospheres stained for ALDH (red), GD2
(green) and nucleus (blue) are presented. (D) The mammosphere forming capacity of the indicated cell populations sorted from BC-P007, BC-P107 and
BC-P515. The mammospheres of the indicated cell populations of these three xenografted tumor cells were counted and their mean mammosphere
formation efficiency was presented as the mean + SEM of triplicate experiments from each of the three independent xenografts. *, P <0.0001.

Table 2 Engraftment capacity of different cell populations sorted from cryopreserved tumor cells

BC-P007 4x10* 2x10* 1x10* 5x10° 4x10®° 1x10®° 500 100 50 20  Frequency”  Distribution*
ALDH* 3/8 3/8 1/3 1/7 120x% 10 75%

ALDH™ 0/4 0/6 1/7 03 0/4 1:1.1x10° 25%
ALDH*/GD2" 2/2 3/3 6/10 5010 2/20  0/3  161x10°

ALDH/GD2™  0/4 01 0/8 2/10 0/15 113%10°

ALDH* 3/8 3/8 1/3 1/7 120x 10

ALDH*/GD2* 2/2 3/3 6/10 5110 2/20  0/3  161x10°

BC-P515 1x10°  2x10* 1x10* 4x10° 1x10® 500 100 50  Frequency™  Distribution®
ALDH* 1/4 0/3 1/4 3/9 1/5 120 10* 96%

ALDH™ 0/4 0/3 0/2 0/9 1>42%10° 4%
ALDH*/GD2* 1/3* 7/10 4/5 o1 27 12 171x10°

ALDH/GD2™ 01 0/2 1/9 0/4 0/10 125x%10°

ALDH* 1/4 0/3 1/4 3/9 1/5 120% 10*

ALDH*/GD2* 1/3 7/10 4/5 o1 27 12 171x10°

BC-P007 and BC-P515 cryopreserved tumor cells from patient-derived xenografts of PT were sorted by FACS into ALDEFLUOR-positive, ALDEFLUOR-negative or
ALDEFLUOR and GD2 double positive and double negative cells. Varying numbers of the sorted cells were injected in fat pads of NOD-SDID mice to evaluate their
tumor-initiating potential. The frequency of cancer-initiating cells was analyzed using ELDA software.

*Including one of three mice died the day after tumor injection.

#:The distribution of tumor-initiating cells among the BC-P007 and BC-P515 ALDH + and ALDH- cells.

T :Frequency was calculated by ELDA software, although the P-value for likelihood ratio test of single-hit model in each group was less than P=0.5.
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Comparison of primary cultures of cells derived from the
tumor and non-tumor part of PT

To address the possibility that the mammmospheres
may be derived from ALDH" normal stromal cells, we
established primary cultures of cells derived from the
tumor part and non-tumor part of human breast cancer
sample BC515. The primary culture of the non-tumor
part (515-NT) could be propagated for up to approxi-
mately 18 to 19 passages only, whereas the tumor part
can be sustained in vitro for at least 35 passages. The
tumorigenic ability of 515NT was tested by injecting
2.5 x 10° cells of 515 NT into the cleared fat pads of 12
mice. None of these mice showed tumor growth up to
Day 291. On the other hand, injection of 1 x 10° cells of
BC-P515 yielded tumor growth in 20/20 mice by Day 7
after injection. In addition, the ALDH" and ALDH"™ cells
of BC-P515 and 515NT were sorted to evaluate their
ability for mammosphere formation. As shown in Add-
itional file 1: Table S6, the number of mammospheres
was at least one log higher (10-fold) in ALDH" BC-P515
cells than in ALDH" 515 NT cells. Furthermore, BC-
P515 contained 40 XO chromosomes with several karyo-
typic abnomalities, in contrast to a normal karyotype
with 46 XX in 515 N'T (data not shown).

ALDH*/GD2* cells could serve as a marker for cancer
stem cells in malignant PTs

To screen for other markers of cancer stem cells in PTs,
we harvested the BC-P007 xenografted tumor cells for
FACS sorting using a panel of markers including CD29,
CD44, CD90, CD117, CD 133, CD166, GD2, CD10,
CD24 and ALDH. Following cell sorting, various sub-
populations of the BC-P007 xenografted tumor were
evaluated for their ability to grow as monolayer cultures
with serial passages. CD24 and CD133 were not
expressed in BC-P007 and subpopulations sorted by
CD10, CD90, CD117 and CD166 grew very poorly in
monolayer cultures. CD29" and CD44" cells lasted for
two to three passages only. The neural ganglioside GD2
was reported to be a marker for MSC and GD2-positive
MSC could be induced to differentiate into osteoblasts,
adipocytes and chondroblasts [10]. In addition, GD2 ex-
pression was observed in 25% to 67% of the cells from
four xenografted tumors. Thus, GD2 was also included
in the panel for testing. Notably, GD2" cells propagated
for more than 18 generations whereas GD2™ cells did
not last for more than three passages. Furthermore,
ALDH"/GD2" (6.8%) and ALDH /GD2 cells (11.5%)
were sorted from BC-P007 xenograft (Figure 3A), and
cultured in mammosphere condition. As shown in
Figure 3B, ALDH"/GD2" cells formed significantly more
mammospheres than double negative cells. Immunofluor-
escence staining showed the preferential localization of
ALDH'/GD2"cells at the sphere periphery (Figure 3C, Z-
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stack). Next, we compared the mammosphere forming
capacities for each subpopulation of BC-P007, BC-P107
and BC-P515 xenografts based on their ALDH and GD2
expression. As shown in Figure 3D, MFE of GD2 positive
cells from these three xenografts was 18.08 +1.7/1,000
cells, as compared to 4.8 + 1.2 for GD2 negative cells
(P <0.0001), and MFE of ALDH*/GD2" cells was 20.5 +
3.6/1,000 as compared to 1.6 + 0.4 for ALDH /GD2" cells
(P <0.0001). These results suggested that ALDH/GD2 sin-
gle and double positive cells might have greater tumori-
genic potentials than single and double negative cells. As a
further proof, cryopreserved BC-P007 and BC-P515 xeno-
grafted cells were sorted into single or double positive and
double negative cells for ALDH and GD2 and injected
into NOD-SCID mice. Significantly, the tumor-initiating
frequency of ALDH'"/GD2" cells sorted from cryopre-
served BC-P007 and BC-P515 was estimated to be ap-
proximately 35.2- to 1,000- and approximately 2.8- to
33.3-fold higher than ALDH /GD2~ and ALDH" cells, re-
spectively (Table 2). In addition, the phenotypic profile of
xenograted tumors derived from ALDH'/GD2" cells
showed intratumor heterogeneity, similar to the parental
tumors, and the sorted ALDH"/GD2" cells could be seri-
ally passaged in mice for more than three generations
(Additional file 1: Table S7).These findings support the
notion that ALDH'/GD2" expression could serve as a
marker to enrich cancer initiating cells in malignant PTs.

In vitro differentiation of ALDH*/GD2" cells into
neuro-ectodermal cell lineages

We next evaluated the potentials of ALDH/GD2 single
positive and double positive cells from BC-P007, BC-
P107 and BC-P515 xenografted tumors to differentiate
into various cell lineages. Using an in vitro culture
system, we found that the ALDH" cells sorted from BC-
P007 xenografted tumors could be induced to differenti-
ate into adipocyte as revealed by Oil Red O staining
(Figure 4A), osteocytes with positive staining by Alizarin
red (Figure 4B), and chondrocytes, with immunofluores-
cent staining for collagen type II (Figure 4C). Further-
more, GD2 and collagen type II were expressed by
different populations of cells in cultures induced for chon-
drocyte differentiation (Figure 4D, E). When ALDH'/GD2*
cells were induced for neuronal differentiation with retinoic
acid, hydrocortisone, ITS and cAMP, spindle-shaped cells
emerged on Day 7 (Figure 4F), which displayed a network
architecture by Day 14 (Figure 4G). By Day 22, these cells
differentiated into different neural lineages, as identified by
specific neural markers, including nestin (neuron stem/
progenitors cell marker), BIII-tubulin (immature neur-
onal progenitor cell marker) and GFAP (glial fibrillary
acidic protein, marker for astrocytes) (Figure 4H).
Interestingly, cells staining for nestin in the cell body
and Pll-tubulin in the tail portion were noted
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Figure 4 In vitro differentiation of ALDH'/GD2" cells into neuro-ectodermal lineages. Monolayer cultures of Aldehyde dehydrogenase 1
(ALDH)* cells obtained from BC-PO07 xenografts were induced to differentiate into various cells lineages. Adipocyte was induced by incubation
with dexamethasone, insulin, isobutylmethylxanthine and indomethacin for 30 days, and identified by Oil Red O staining (A. 400x). Osteocytes
were induced by treatment with ascorbic acid, B-glycerophosphate and dexamethasone for 23 days and examined by Alizarin red staining

(B. 400x). Chondrocytes were induced by culturing with ITS + premix, sodium pyruvate, TGF-3 and dexamethasone for 15 days, and confirmed
by immunofluorescence staining with anti-human collagen Il antibody (C. 400x). The expression of GD2 (green) and collagen type 2 (red) in
chondrocytes was detected by fluorescence-conjugated antibodies and observed under fluorescence microscope (D and E. 400x). Neuron-like
cells were induced by incubation of the ALDH*/GD2* cells from xenografted tumor of BC-P007 with retinoic acid, hydrocortisone, ITS and c-AMP,
and was observed under phase contrast microscope on Day 7 (F. 400x) and Day 14 (G. 400x). Twenty-two days after culture, the neuronal lineages of
these cells were examined by fluorescence microscopy with AF488 labeled antibodies against nestin, Blli-tubulin and GFAP (H. 400x). And, double
staining of nestin and Blll-tubulin, Blll-tubulin and GFAP and GFAP and nestin (I - K, 1,000x) with AF488 or AF594-labeled antibodies was shown.

Nestin Bll-Hublin

merge

occasionally (Figure 4I). In addition, a few cells displayed
co-localized staining for GFAP and BIII-tubulin (Figure 47).
On the other hand, nestin and GFAP expression was ob-
served in separate cell populations (Figure 4K). These
findings demonstrated the ability of ALDH"/GD2" cells to
differentiate into diverse lineages of neural cells. Further-
more, the ALDH'/GD2" cells could also be induced to
differentiate into adipocytes, osteocytes and chondrocytes,
comparable to ALDH" cells. Similar results were observed
with ALDH" or ALDH"/GD2" cells sorted from the BC-
P107 and BC-P515 xenografted tumors (data not shown).
Our findings suggest that ALDH"/GD2" possess the abil-
ity to differentiate along various cell lineages, including
neuro-ectodermal lineages. This is the first documentation
for neural differentiation of malignant PT in vitro.

Capacity of ALDH" or ALDH*/GD2" cells to undergo
spontaneous differentiation in vivo

Among more than 16 BC-P007 xenografted mice, one-
fifth showed metastatic lesions, mostly in the thoracic

cavity. Some of the metastatic tumors contained cells
with lacunar space easily discernible by H&E staining,
reminiscent of chondroid cells (Figure 5A), which were
confirmed by Alcian blue staining (Figure 5B) and im-
munohistochemical staining with anti-human collagen
type II antibody (Figure 5C). Other lesions differentiated
into different lineages of neural cells with the expression
of nestin, BIII-tubulin and GFAP by immunohistochemi-
cal staining (Figure 5D). Interestingly, the primary tumor
of BC-P007 xenograft at the site of injection expressed
collagen type II (50% moderate staining, data not
shown), but not nestin, PIII-tublin and GFAP. These
findings suggested that mammospheres derived from
ALDH" cells possessed the ability to differentiate into
various cell lineages in vivo. Similarly, mammospheres
derived from ALDH'/GD2" cells could form xenograft
tumors with prominent features of neural and chondroid
differentiation. Figure 5E showed an interesting tumor
engrafted from ALDH"/GD2" cells with a distinct dichot-
omy in differentiation. The right portion of the tumor
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Figure 5 Capacity of ALDH" and ALDH*/GD2" cells to undergo differentiation in vivo. Mammospheres derived from BC-P007 Aldehyde
dehydrogenase 1 (ALDH)" cells were engrafted. Five thousand ALDH" cells were injection into fat pads and on Day 86, severe tumor nodules
were observed in the thoracic cavity. In addition to tumor at the injection site, one of the metastatic tumors removed for H&E staining revealed
the presence of cells with lacunar space, suggestive of chondroid cells (A. 200x), which was confirmed by Alcian blue staining (B. 200x ) and
anti-collagen type Il staining (C. 200x). In addition, the metastatic tumor was examined by staining for neuro-ectodermal cell lineages markers,
including nestin, Blll-tublin and GFAP (D. 400X). Fifty ALDH"/GD2* cells sorted from the BC-P007 xenografted tumor were engrafted and the
tumor was removed on Day 61(E). H&E staining revealed the presence of neuron-like cells (circles) (F. 200x). The tumor was examined for the
expression of collagen type I, nestin, Blll-tublin and GFAP by immunohistochemical staining. The right upper region expressed anti-human
collagen type Il (G. 200x), and the left upper region expressed nestin moderate staining, Blll-tublin and GFAP expressed weak staining (H. 400x).
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stained positively for collagen type II (Figure 5F) and the
left portion contained neuron-like cells by H&E staining
(Figure 5G) with weak to moderate staining for nestin
(70%), BILI-tublin (10%) and GFAP (60%, Figure 5H). In
addition, clinical tumor specimens of patients BC007,
BC107, BC515 and BC877 were also found to express
nestin (approximately 20 to 80%), BIII-tublin (approxi-
mately <10 to 35%) and approximately GFAP (35 to
80%) (Additional file 1: Table S8). Thus, this in vivo sys-
tem lends further support that ALDH" and ALDH'/GD2*
subpopulations of malignant PTs might be enriched in
cells displaying characteristics of MSC, namely the ability
for self-renewal and differentiation into a variety of cell
lineages including neural specification. To date, this is the

first time that malignant PTs were shown to differentiate
into neural lineage in vivo.

Discussion

PTs were derived from the periductal stromal cells of
the breast. Malignant stromal transformation in PT is
usually of the fibrosarcomatous type [6,7]. Thus, PT
lacks cytokeratins which are found in most carcinomas,
carcinoid tumors and epithelial organs, but expresses
vimentin which is found in tumors of mesenchymal ori-
gin, not carcinomas [24,30]. In line with this, for all PT
samples in our study, their xenografted tumors dis-
played positive staining for vimentin and negative for
cytokeratins. In addition to the common malignant
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fibrous elements, features of rhabdomyosarcoma, lipo-
sarcoma and osteosarcoma were occasionally observed
in malignant PTs. The heterogeneity of malignant PTs
has been largely attributed to metaplastic changes of
the malignant stromal cells. The versatile properties of
malignant PTs suggest that CSCs exist in PT. We dem-
onstrated for the first time that many markers, includ-
ing CD44, CD29, CD106, CD166, CD90, CD117 and
GD2 were expressed in malignant PTs although CD105
was detected in only 1 of 51 PTs. CD105, a type I mem-
brane glycoprotein that is found in endothelial cells, ac-
tivated macrophages, fibroblasts and smooth muscle
cells is a specific and sensitive marker for tumor angio-
genesis. Its expression was associated with increased
micro-vessel staining and poor prognosis in childhood’s
acute lymphoblastic leukemia [31], breast carcinoma
[32], colorectal carcinoma [33] and so on. However,
whether CD105 is expressed in sarcoma or malignant
PT has not been reported until now. Interestingly,
Globo H, a carbohydrate antigen commonly expressed
in breast cancer (61 to 80%), was also detected in ma-
lignant PT specimens, albeit at lower frequency (9.8%).
Moreover, several groups have shown an association of
the degree of malignancy of PTs with the expressions of
Ki-67, CD117, CD10 and p53. Consistent with these re-
ports, high frequency of malignant PTs expressing Ki-
67 (82.3%), CD117 (70.5%), CD10 (60.7%) and P53
(50.9%) was observed in the present study. Further-
more, expression of CD117 (c-kit) was found to correlate
significantly with both grades and recurrence of PTs [34].
Since c-kit-overexpressing cancers, including gastrointes-
tinal stromal tumors, could be treated with tyrosine kinase
inhibitor, such as imatinib mesylate, it will be of interest to
investigate whether malignant PTs may be responsive to
c-kit inhibitors.

CSCs play a significant role in the survival and pro-
gression of malignant neoplasms [35]. CD44*/CD24~
have been identified as cancer stem cell markers for
breast cancer [36], CD133* aimed at brain tumors [37]
and colon cancer [38], as well as CD20 designed for mel-
anoma [39]. More recently, CD45/ CD90", CD133" and
CD44 " have been identified as CSC markers for hepa-
toma [40] osteosarcoma [41] and stomach cancer [42], re-
spectively. However, CSC markers for PT have remained
an enigma. In this study, we demonstrated for the first
time that ALDH" cells could serve as a marker for enrich-
ment of cancer stem cells in malignant PTs. Moreover,
ALDH'/GD2" cells could further enrich CSCs by 33-fold
of ALDH" cells based on in vivo tumorigenic potentials.
In addition to self-renewal, CSCs harbors the capacity for
differentiation into heterogeneous cell lineages. Indeed,
tumors engrafted from ALDH" or ALDH'/GD2" cells
showed evidence of in vivo differentiation into chondro-
cytes and neural cells. Furthermore, ALDH"/GD2" cells
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could be induced to differentiate into adipocytes, osteo-
cytes and chondrocytes as well as neural lineages in vitro.
Our observation of neural differentiation of clinical speci-
mens of PTs and their xenografts provided the first evi-
dence for neural differentiation of malignant PTs. Taken
together, these data support the notion that ALDH and
GD2 may serve as markers for enrichment of CSCs for
malignant PTs. It is noteworthy that GD2 has recently
been reported to be a marker for CSCs in adenocarcinoma
of the breast [11]. The findings of GD2 as a CSC marker
for PT and breast cancer have important therapeutic im-
plication, in light of the recent success of anti-GD2 in the
treatment of high risk neuroblastoma [43].

Conclusions

In this study, analysis of 51 clinical specimens of malig-
nant PTs documented the expression of many markers
expressed by mesenchymal stem cells, as well as ALDH
and Oct-4. Using four xenografts established from pri-
mary human PTs, we demonstrated for the first time
that ALDH and GD2 could serve as novel markers for ma-
lignant PTs, and could enrich CSCs of PTs. Moreover, we
provided the first evidence that the sorted ALDH'/GD2"
cells could be induced to differentiate into neural cells of
various lineages, in addition to adipocytes, osteocytes and
chondrocytes. Evidence of neural differentiation was also
observed in clinical specimens and xenografts of malignant
PTs. Our findings revealed that malignant PTs possess
many characteristics of MSC, and ALDH and GD2 could
enrich PT stem cells.
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