38 research outputs found

    Bioaccumulation of total mercury in the earthworm Eisenia andrei

    Get PDF
    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earth- worms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contribut - ing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms ( Eisenia andrei ) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioac- cumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg 2 + was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg 2 + uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h ? 1 .Scopus 201

    The diagnosis of male infertility:an analysis of the evidence to support the developments of global WHO guidance. Challenges and future research opportunities

    Get PDF

    Molecular characterization of MRSA collected during national surveillance between 2008 and 2019 in the Netherlands

    Get PDF
    Background.Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized.Methods.All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes.Results.We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains.Conclusions.Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.A group of bacteria that cause difficult-to-treat infections in humans is methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to monitor changes in the spread of MRSA, their disease causing potential and resistance to antibiotics used to treat MRSA infections. MRSA from patients and their contacts in the Netherlands were collected over a period of 12 years and characterized. This revealed new types of MRSA emerged and others disappeared. An increasing number of MRSA produces a protein called PVL toxin, enabling MRSA to cause more severe infections. Also, some people appear to carry MRSA without any disease for more than a year. These findings suggest an increasing disease potential of MRSA and possible unnoticed sources of infection. Consequently, it is important to maintain monitoring of these infections to minimize MRSA spread.Schouls et al. characterize 43,321 methicillin-resistant Staphylococcus aureus (MRSA) isolates obtained between 2008 and 2019 in the Netherlands. Genomic changes occur in the MRSA population, with increases in the proportion of PVL-positive MRSA.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    Copolymerization of ethylene and vinyl acetate at low pressure. Determination of the kinetics by sequential sampling

    No full text
    Monomer reactivity ratios in ethylene-vinyl acetate copolymn. at 62.deg. and 33.9 atm were detd. to be 0.746 +- 0.005 and 1.515 +- 0.007, resp., by sequential sampling of monomer feed, quant. gas chromatog., and computer calcn. based on nonlinear least-squares metho

    A novel synthesis of vinyl esters from vinylversatate-10

    No full text
    Vinyl esters were prepd. in 45-90% yield by transvinylation of the corresponding acid with vinyl versatate in the presence of Hg(OAc)2 and H2SO4. A mechanism is suggested involving a complex mercuric io
    corecore