15 research outputs found

    Ameliorative effect of Morus alba leaves extract against developmental retinopathy in pups of diabetic and aluminum intoxicated pregnant albino rats

    Get PDF
    Objective: To investigate the possible ameliorative effect of crude water extract of Morus alba (M. alba) leaves on retinopathy of rat pups maternally subjected to diabetes and/or Al intoxication. Methods: Both control and experimental groups were subjected to certain integrated approaches, namely, biochemical assessments, light microscopic investigation, transmission electron microscopic investigation, single cell gel electrophoresis (comet assay) and determination of DNA fragmentation. Results: The retina of pups of diabetic and/or Al-intoxicated mothers exhibited abnormal alterations in retinal cell layers including retinal pigmented epithelium, photoreceptor inner segment and ganglion cells. Increased incidence of DNA fragmentation and apoptosis were evident in pups of diabetic and/or Al-intoxicated mothers. However, retina of pups maternally received M. alba extract plus diabetes or Al-intoxicated alone or in combination showed marked amelioration. Less degree of ameliorations was seen in retina of pups maternally subjected to combined treatment. Furthermore, application of crude water extract of M. alba resulted in amelioration of the alterations of maternal serum glucose as well as Al concentration. Conclusions: Based on the results of the present study, M. alba extract is effective against experimentally diabetic and Al-induced developmental retinopathy

    Printed Receive Coils with High Acoustic Transparency for Magnetic Resonance Guided Focused Ultrasound

    Get PDF
    Abstract In magnetic resonance guided focused ultrasound (MRgFUS) therapy sound waves are focused through the body to selectively ablate difficult to access lesions and tissues. A magnetic resonance imaging (MRI) scanner non-invasively tracks the temperature increase throughout the tissue to guide the therapy. In clinical MRI, tightly fitted hardware comprised of multichannel coil arrays are required to capture high quality images at high spatiotemporal resolution. Ablating tissue requires a clear path for acoustic energy to travel but current array materials scatter and attenuate acoustic energy. As a result coil arrays are placed outside of the transducer, clear of the beam path, compromising imaging speed, resolution, and temperature accuracy of the scan. Here we show that when coil arrays are fabricated by additive manufacturing (i.e., printing), they exhibit acoustic transparency as high as 89.5%. This allows the coils to be placed in the beam path increasing the image signal to noise ratio (SNR) five-fold in phantoms and volunteers. We also characterize printed coil materials properties over time when submerged in the water required for acoustic coupling. These arrays offer high SNR and acceleration capabilities, which can address current challenges in treating head and abdominal tumors allowing MRgFUS to give patients better outcomes

    GTP signaling links metabolism, DNA repair, and responses to genotoxic stress

    No full text
    How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment
    corecore