39 research outputs found

    No Employee Left Behind: The Principals of Change

    Get PDF

    The MC1R gene in the guppy (Poecilia reticulata): Genotypic and phenotypic polymorphisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The guppy (<it>Poecilia reticulata</it>) is an important model organism for studying sexual selection; male guppies have complex and conspicuous pigmentation, and female guppies exhibit preferences for males with specific color spots. Understanding the genetic basis underlying pigmentation variation in the guppy is important for exploring the factors causing the maintenance of color polymorphism in wild populations.</p> <p>Findings</p> <p>We focused on the melanic black pigmentation of guppies, and examined genetic variations in the <it>melanocortin 1 receptor </it>(<it>MC1R</it>) gene because variation in this gene is known to contribute to polymorphism of melanin pigmentation in several animal species. The complete coding sequence of the guppy <it>MC1R </it>gene was determined, and two different <it>MC1R </it>alleles (963 and 969 bp) were found in wild populations. Ornamental strain guppies with a 963-bp <it>MC1R </it>tended to show less black pigmentation than those with a 969-bp <it>MC1R</it>, although the association between <it>MC1R </it>genotype and black pigmentation disappeared in the F<sub>2 </sub>offspring.</p> <p>Conclusions</p> <p>The guppy <it>MC1R </it>gene showed variation in the five wild Trinidadian populations we examined, and these populations also differed in terms of allele frequencies. We identified a significant association between black pigmentation and <it>MC1R </it>genotype in fish obtained from aquarium shops. However, the results from F<sub>2 </sub>families suggest that there are other genes that modify the effects of the <it>MC1R </it>gene.</p

    Variation in life history traits and transcriptome associated with adaptation to diet shifts in the ladybird Cryptolaemus montrouzieri

    Get PDF
    Background: Despite the broad diet range of many predatory ladybirds, the mechanisms involved in their adaptation to diet shifts are not completely understood. Here, we explored how a primarily coccidophagous ladybird Cryptolaemus montrouzieri adapts to feeding on aphids. Results: Based on the lower survival rate, longer developmental time, and lower adult body weight and reproduction rate of the predator, the aphid Megoura japonica proved being less suitable to support C. montrouzieri as compared with the citrus mealybug Planococcus citri. The results indicated up-regulation of genes related to ribosome and translation in fourth instars, which may be related to their suboptimal development. Also, several genes related to biochemical transport and metabolism, and detoxification were up-regulated as a result of adaptation to the changes in nutritional and non-nutritional (toxic) components of the prey. Conclusion: Our results indicated that C. montrouzieri succeeded in feeding on aphids by regulation of genes related to development, digestion and detoxification. Thus, we argue that these candidate genes are valuable for further studies of the functional evolution of ladybirds led by diet shifts
    corecore