1,430 research outputs found

    Changes in expression and activity of the secretory pathway Ca2+ATPase 1 (SPCA1) in A7r5 vascular smooth muscle cells cultured at different glucose concentrations

    Get PDF
    Diabetes mellitus-related vascular disease is often associated with both a dysregulation of Ca2+^{2+} homoeostasis and enhanced secretory activity in VSMCs (vascular smooth muscle cells). Here, we employ a commonly used rat cell line for VSMCs (A7r5 cells) to investigate the effects of glucose on the expression and activity of the SPCA1 (secretory pathway Ca2+^{2+}-ATPase 1; also known as ATP2C1), which is a P-type Ca2+^{2+} pump located in the Golgi apparatus that plays a key role in the secretory pathway. Our results show that mRNA expression levels of SPCA1 are significantly increased in A7r5 cells cultured in high glucose (25.0 mM)-supplemented medium compared with normal glucose (5.55 mM)-supplemented medium. SPCA1 protein expression levels and thapsigargin-insensitive Ca2+^{2+}-dependent ATPase activity were also consistent with a higher than normal expression level of SPCA1 in high-glucose-cultured A7r5 cells. Analysis of AVP (arginine-vasopressin)-induced cytosolic Ca2+^{2+} transients in A7r5 cells (after pre-treatment with thapsigargin) showed faster rise and decay phases in cells grown in high glucose medium compared with cells grown in normal glucose medium, supporting the observation of increased SPCA expression/activity. The significant levels of both Ca2+^{2+}-ATPase activity and AVP-induced Ca2+^{2+} transients, in the presence of thapsigargin, indicate that SPCA must play a significant role in Ca2+^{2+} uptake within VSMCs. We therefore propose that, if such increases in SPCA expression and activity also occur in primary VSMCs, this may play a substantial role in the aetiology of diabetes mellitus-associated vascular disease, due to alterations in Ca2+^{2+} homoeostasis within the Golgi apparatus

    Safety of medication use in primary care

    Get PDF
    © 2014 Royal Pharmaceutical Society.BACKGROUND: Medication errors are one of the leading causes of harmin health care. Review and analysis of errors have often emphasized their preventable nature and potential for reoccurrence. Of the few error studies conducted in primary care to date, most have focused on evaluating individual parts of the medicines management system. Studying individual parts of the system does not provide a complete perspective and may further weaken the evidence and undermine interventions.AIM AND OBJECTIVES: The aim of this review is to estimate the scale of medication errors as a problem across the medicines management system in primary care. Objectives were: To review studies addressing the rates of medication errors, and To identify studies on interventions to prevent medication errors in primary care.METHODS: A systematic search of the literature was performed in PubMed (MEDLINE), International Pharmaceutical Abstracts (IPA), Embase, PsycINFO, PASCAL, Science Direct, Scopus, Web of Knowledge, and CINAHL PLUS from 1999 to November, 2012. Bibliographies of relevant publications were searched for additional studies.KEY FINDINGS: Thirty-three studies estimating the incidence of medication errors and thirty-six studies evaluating the impact of error-prevention interventions in primary care were reviewed. This review demonstrated that medication errors are common, with error rates between 90%, depending on the part of the system studied, and the definitions and methods used. The prescribing stage is the most susceptible, and that the elderly (over 65 years), and children (under 18 years) are more likely to experience significant errors. Individual interventions demonstrated marginal improvements in medication safety when implemented on their own.CONCLUSION: Targeting the more susceptible population groups and the most dangerous aspects of the system may be a more effective approach to error management and prevention. Co-implementation of existing interventions at points within the system may offer time- and cost-effective options to improving medication safety in primary care.Peer reviewe

    Transverse Spin at PHENIX: Results and Prospects

    Full text link
    The Relativistic Heavy Ion Collider (RHIC), as the world's first and only polarized proton collider, offers a unique environment in which to study the spin structure of the proton. In order to study the proton's transverse spin structure, the PHENIX experiment at RHIC took data with transversely polarized beams in 2001-02 and 2005, and it has plans for further running with transverse polarization in 2006 and beyond. Results from early running as well as prospective measurements for the future will be discussed.Comment: 6 pages, 2 figures, presented at Transversity 2005, Como, Ital

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Analysis of symmetries in models of multi-strain infections

    Get PDF
    In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases

    Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis

    Get PDF
    Knowledge about associations between changes in the structure and/or function of intestinal microbes (the microbiota) and the pathogenesis of various diseases is expanding. However, interactions between the intestinal microbiota and different pharmaceuticals and the impact of these on responses to treatment are less well studied. Several mechanisms are known by which drug-microbiota interactions can influence drug bioavailability, efficacy, and/or toxicity. This includes direct activation or inactivation of drugs by microbial enzymes which can enhance or reduce drug effectiveness. The extensive metabolic capabilities of the intestinal microbiota make it a hotspot for drug modification. However, drugs can also influence the microbiota profoundly and change the outcome of interactions with the host. Additionally, individual microbiota signatures are unique, leading to substantial variation in host responses to particular drugs. In this review, we describe several known and emerging examples of how drug-microbiota interactions influence the responses of patients to treatment for various diseases, including inflammatory bowel disease, type 2 diabetes and cancer. Focussing on rheumatoid arthritis (RA), a chronic inflammatory disease of the joints which has been linked with microbial dysbiosis, we propose mechanisms by which the intestinal microbiota may affect responses to treatment with methotrexate which are highly variable. Furthering our knowledge of this subject will eventually lead to the adoption of new treatment strategies incorporating microbiota signatures to predict or improve treatment outcomes

    Nuclear Modification Factors for Hadrons At Forward and Backward Rapidities in Deuteron-Gold Collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.Comment: 330 authors, 6 pages text, 4 figures, REVTeX4. Published in Physical Review Letters. Minor changes over previous version in response to referee and editor comments, plus updating of references. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore