48 research outputs found

    Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat

    Get PDF
    Understanding woolly mammoth ecology is key to understanding Pleistocene community dynamics and evaluating the roles of human hunting and climate change in late Quaternary megafaunal extinctions. Previous isotopic studies of mammoths’ diet and physiology have been hampered by the ‘mammoth conundrum’: woolly mammoths have anomalously high collagen δ15N values, which are more similar to coeval carnivores than herbivores and which could imply a distinct diet and (or) habitat, or a physiological adaptation. We analyzed individual amino acids from collagen of adult woolly mammoths and coeval species and discovered greater  15N enrichment in source amino acids of woolly mammoths than in most other herbivores or carnivores. Woolly mammoths consumed an isotopically distinct food source, reflective of extreme aridity, dung fertilization and (or) plant selection. This dietary signal suggests that woolly mammoths occupied a distinct habitat or forage niche relative to other Pleistocene herbivores

    Disentangling the effect of farming practice and aridity on crop stable isotope values: a present-day model from Morocco and its application to early farming sites in the eastern Mediterranean

    Get PDF
    Agriculture has played a pivotal role in shaping landscapes, soils and vegetation. Developing a better understanding of early farming practices can contribute to wider questions regarding the long-term impact of farming and its nature in comparison with present-day traditional agrosystems. In this study we determine stable carbon and nitrogen isotope values of barley grains from a series of present-day traditionally managed farming plots in Morocco, capturing a range of annual rainfall and farming practices. This allows a framework to be developed to refine current isotopic approaches used to infer manuring intensity and crop water status in (semi-)arid regions. This method has been applied to charred crop remains from two early farming sites in the eastern Mediterranean: Abu Hureyra and ‘Ain Ghazal. In this way, our study enhances knowledge of agricultural practice in the past, adding to understanding of how people have shaped and adapted to their environment over thousands of years

    Interpreting ancient food practices:Stable isotope and molecular analyses of visible and absorbed residues from a year-long cooking experiment

    Get PDF
    Chemical analyses of carbonized and absorbed organic residues from archaeological ceramic cooking vessels can provide a unique window into the culinary cultures of ancient people, resource use, and environmental effects by identifying ingredients used in ancient meals. However, it remains uncertain whether recovered organic residues represent only the final foodstuffs prepared or are the accumulation of various cooking events within the same vessel. To assess this, we cooked seven mixtures of C3 and C4 foodstuffs in unglazed pots once per week for one year, then changed recipes between pots for the final cooking events. We conducted bulk stable-isotope analysis and lipid residue analysis on the charred food macro-remains, carbonized thin layer organic patina residues and absorbed lipids over the course of the experiment. Our results indicate that: (1) the composition of charred macro-remains represent the final foodstuffs cooked within vessels, (2) thin-layer patina residues represent a mixture of previous cooking events with bias towards the final product(s) cooked in the pot, and (3) absorbed lipid residues are developed over a number of cooking events and are replaced slowly over time, with little evidence of the final recipe ingredients

    Stable carbon and nitrogen isotope enrichment in primate tissues

    Get PDF
    Isotopic studies of wild primates have used a wide range of tissues to infer diet and model the foraging ecologies of extinct species. The use of mismatched tissues for such comparisons can be problematic because differences in amino acid compositions can lead to small isotopic differences between tissues. Additionally, physiological and dietary differences among primate species could lead to variable offsets between apatite carbonate and collagen. To improve our understanding of the isotopic chemistry of primates, we explored the apparent enrichment (ε*) between bone collagen and muscle, collagen and fur or hair keratin, muscle and keratin, and collagen and bone carbonate across the primate order. We found that the mean ε* values of proteinaceous tissues were small (≤1‰), and uncorrelated with body size or phylogenetic relatedness. Additionally, ε* values did not vary by habitat, sex, age, or manner of death. The mean ε* value between bone carbonate and collagen (5.6 ± 1.2‰) was consistent with values reported for omnivorous mammals consuming monoisotopic diets. These primate-specific apparent enrichment values will be a valuable tool for cross-species comparisons. Additionally, they will facilitate dietary comparisons between living and fossil primates

    Searching for the origins of bere barley: a geometric morphometric approach to cereal landrace recognition in archaeology

    Get PDF
    Bere is a landrace of barley, adapted to the marginal conditions of northern Scotland, especially those of the Northern and Western Isles. The history of bere on these islands is long and, in an era of diminishing landrace cultivation, bere now represents one of the oldest cereal landraces in Europe still grown commercially. The longevity of bere raises the possibility of using grain characteristics of present-day specimens to identify bere in the archaeological record. Geometric modern morphometric (GMM) analysis of grains from bere and other barley landraces is conducted to determine whether landraces can be differentiated on grain morphology. Results indicate that there are morphological differences between bere and other British and Scandinavian landraces, and between bere from Orkney and the Western Isles, both of which are apparent in genetic analysis. This finding paves the way for the identification of bere archaeologically, helping to establish its status as living heritage and securing its commercial future. More broadly, this work indicates the potential of grain GMM for the recognition of cereal landraces, permitting the ancestry and exchange of landraces to be traced in the archaeological record

    Animal keeping in Chalcolithic North-Central Anatolia:What can stable isotope analysis add?

    Get PDF
    Stable isotope analysis is an essential investigative technique, complementary to more traditional zooarchaeological approaches to elucidating animal keeping practices. Carbon (δ13C) and nitrogen (δ15N) stable isotope values of 132 domesticates (cattle, caprines and pigs) were evaluated to investigate one aspect of animal keeping, animal forage, at the Late Chalcolithic (mid-fourth millennium BC) site of Çamlıbel Tarlası, which is located in north-central Anatolia. The analyses indicated that all of the domesticates had diets based predominantly on C3 plants. Pig and caprine δ13C and δ15N values were found to be statistically indistinguishable. However, cattle exhibited distinctive stable isotope values and, therefore, differences in diet from both pigs and caprines at Çamlıbel Tarlası. This difference may relate to the distinct patterns of foraging behaviour exhibited by the domesticates. Alternatively, this diversity may result from the use of different grazing areas or from the foddering practices of the Çamlıbel Tarlası inhabitants
    corecore