2,576 research outputs found

    Single to Double Hump Transition in the Equilibrium Distribution Function of Relativistic Particles

    Get PDF
    We unveil a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-J\"uttner distributions, all exhibiting the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on two-dimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.Comment: 5 pages, 5 figure

    A Rydberg Quantum Simulator

    Full text link
    Following Feynman and as elaborated on by Lloyd, a universal quantum simulator (QS) is a controlled quantum device which reproduces the dynamics of any other many particle quantum system with short range interactions. This dynamics can refer to both coherent Hamiltonian and dissipative open system evolution. We investigate how laser excited Rydberg atoms in large spacing optical or magnetic lattices can provide an efficient implementation of a universal QS for spin models involving (high order) n-body interactions. This includes the simulation of Hamiltonians of exotic spin models involving n-particle constraints such as the Kitaev toric code, color code, and lattice gauge theories with spin liquid phases. In addition, it provides the ingredients for dissipative preparation of entangled states based on engineering n-particle reservoir couplings. The key basic building blocks of our architecture are efficient and high-fidelity n-qubit entangling gates via auxiliary Rydberg atoms, including a possible dissipative time step via optical pumping. This allows to mimic the time evolution of the system by a sequence of fast, parallel and high-fidelity n-particle coherent and dissipative Rydberg gates.Comment: 8 pages, 4 figure

    Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

    Full text link
    Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc_c superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -- especially in ultracold quantum gases -- are commonly well described by the lowest orbital and a real order parameter. Here, we report on the observation of a novel multi-orbital superfluid phase with a {\it complex} order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.Comment: 5 pages, 4 figure

    Mapping spot blotch resistance genes in four barley populations

    Get PDF
    Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) is the fungal pathogen responsible for spot blotch in barley (Hordeum vulgare L.) and occurs worldwide in warmer, humid growing conditions. Current Australian barley varieties are largely susceptible to this disease and attempts are being made to introduce sources of resistance from North America. In this study we have compared chromosomal locations of spot blotch resistance reactions in four North American two-rowed barley lines; the North Dakota lines ND11231-12 and ND11231-11 and the Canadian lines TR251 and WPG8412-9-2-1. Diversity Arrays Technology (DArT)-based PCR, expressed sequence tag (EST) and SSR markers have been mapped across four populations derived from crosses between susceptible parental lines and these four resistant parents to determine the location of resistance loci. Quantitative trait loci (QTL) conferring resistance to spot blotch in adult plants (APR) were detected on chromosomes 3HS and 7HS. In contrast, seedling resistance (SLR) was controlled solely by a locus on chromosome 7HS. The phenotypic variance explained by the APR QTL on 3HS was between 16 and 25% and the phenotypic variance explained by the 7HS APR QTL was between 8 and 42% across the four populations. The SLR QTL on 7HS explained between 52 to 64% of the phenotypic variance. An examination of the pedigrees of these resistance sources supports the common identity of resistance in these lines and indicates that only a limited number of major resistance loci are available in current two-rowed germplasm

    Pain in IBD Patients: Very Frequent and Frequently Insufficiently Taken into Account.

    Get PDF
    Pain is a common symptom related to inflammatory bowel disease (IBD). In addition to abdominal pain, pain can also be an extraintestinal manifestation of IBD. Pain treatment is challenging and a substantial part of IBD patients are treated with opioids. Therefore, a better knowledge on pain symptoms is crucial for a better therapeutic approach to this clinical problem. Patients of the Swiss IBD Cohort Study (SIBDCS) (n = 2152) received a questionnaire regarding pain intensity, pain localization and impact of pain on daily life and social activities. Furthermore, the questionnaire investigated the use of pain-specific medication. A vast majority of patients (71%) experienced pain during the disease course. For a substantial part of patients (49% in UC and 55% in CD) pain is a longstanding problem (>5 years). Pain in UC was of shorter duration compared to CD (p < 0.01). Abdominal pain (59.5%) and back pain (38.3%) were the main pain localizations. 67% of patients took pain medication; 24% received no pain treatment. The general quality of life was significantly lower in patients suffering of pain compared to those without pain (38 vs. 77; (-100 very bad; 100 very good) p<0.0001). Prevalence of pain is high in patients of the SIBDCS. It is a longstanding problem for the majority of the patients affected. Pain was found to be undertreated in the SIBDCS and was significantly associated with health-related quality of life. Thus, an increased awareness is mandatory to address this frequent complication in the course of IBD

    Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum

    Get PDF
    Key message In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. Abstract The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Colocalization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50 % of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species

    Tight Finite-Key Analysis for Quantum Cryptography

    Get PDF
    Despite enormous progress both in theoretical and experimental quantum cryptography, the security of most current implementations of quantum key distribution is still not established rigorously. One of the main problems is that the security of the final key is highly dependent on the number, M, of signals exchanged between the legitimate parties. While, in any practical implementation, M is limited by the available resources, existing security proofs are often only valid asymptotically for unrealistically large values of M. Here, we demonstrate that this gap between theory and practice can be overcome using a recently developed proof technique based on the uncertainty relation for smooth entropies. Specifically, we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show that security against general attacks can be guaranteed already for moderate values of M.Comment: 11 pages, 2 figure

    Natural Plant Sugar Sources of Anopheles Mosquitoes Strongly Impact Malaria Transmission Potential

    Get PDF
    An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens

    A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone

    Full text link
    Recommended standardized procedures for determining exhaled lower respiratory nitric oxide and nasal nitric oxide have been developed by task forces of the European Respiratory Society and the American Thoracic Society. These recommendations have paved the way for the measurement of nitric oxide to become a diagnostic tool for specific clinical applications. It would be desirable to develop similar guidelines for the sampling of other trace gases in exhaled breath, especially volatile organic compounds (VOCs) which reflect ongoing metabolism. The concentrations of water-soluble, blood-borne substances in exhaled breath are influenced by: (i) breathing patterns affecting gas exchange in the conducting airways; (ii) the concentrations in the tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations of the compound. The classical Farhi equation takes only the alveolar concentrations into account. Real-time measurements of acetone in end-tidal breath under an ergometer challenge show characteristics which cannot be explained within the Farhi setting. Here we develop a compartment model that reliably captures these profiles and is capable of relating breath to the systemic concentrations of acetone. By comparison with experimental data it is inferred that the major part of variability in breath acetone concentrations (e.g., in response to moderate exercise or altered breathing patterns) can be attributed to airway gas exchange, with minimal changes of the underlying blood and tissue concentrations. Moreover, it is deduced that measured end-tidal breath concentrations of acetone determined during resting conditions and free breathing will be rather poor indicators for endogenous levels. Particularly, the current formulation includes the classical Farhi and the Scheid series inhomogeneity model as special limiting cases.Comment: 38 page
    corecore