2,106 research outputs found

    The effect of head-up tilt upon markers of heart rate variability in patients with atrial fibrillation

    Get PDF
    BACKGROUND: Heart rate variability (HRV) analysis is uncommonly undertaken in patients with atrial fibrillation (AF) due to an assumption that ventricular response is random. We sought to determine the effects of head-up tilt (HUT), a stimulus known to elicit an autonomic response, on HRV in patients with AF; we contrasted the findings with those of patients in sinus rhythm (SR). METHODS: Consecutive, clinically indicated tilt tests were examined for 207 patients: 176 in SR, 31 in AF. Patients in AF were compared to an age-matched SR cohort (n = 69). Five minute windows immediately before and after tilting were analyzed using time-domain, frequency-domain and nonlinear HRV parameters. Continuous, noninvasive assessment of blood pressure, heart rate and stroke volume were available in the majority of patients. RESULTS: There were significant differences at baseline in all HRV parameters between AF and age matched SR. HUT produced significant hemodynamic changes, regardless of cardiac rhythm. Coincident with these hemodynamic changes, patients in AF had a significant increase in median [quartile 1, 2] DFA-α2 (+0.14 [-0.03, 0.32], p < .005) and a decrease in sample entropy (-0.17 [-0.50, -0.01], p < .005). CONCLUSION: In the SR cohort, increasing age was associated with fewer HRV changes on tilting. Patients with AF had blunted HRV responses to tilting, mirroring those seen in an age matched SR group. It is feasible to measure HRV in patients with AF and the changes observed on HUT are comparable to those seen in patients in sinus rhythm

    A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma

    Get PDF
    Lomeguatrib, an O6-methylguanine-DNA methyltransferase inactivator, was evaluated in an extended dosing regimen with temozolomide, designed according to pharmacodynamic data from previous studies. Patients with unresectable stage 3 or 4 cutaneous or unknown primary melanoma metastases were treated with lomeguatrib 40 mg, b.i.d. for 10 or 14 days and temozolomide 75–100 mg m−2 on days 1–5. Drugs were administered orally with cycles repeated every 28 days, for up to six cycles. A total of 32 patients were recruited to the study. Lomeguatrib for 10 days with temozolomide 75 mg m−2 was established as the optimal extended lomeguatrib dosing schedule, with haematological toxicity being dose limiting. There were two partial responses to treatment giving an overall response rate of 6.25%. Extending lomeguatrib administration beyond that of temozolomide requires a reduced dose of the latter agent. Only limited clinical activity was seen, suggesting no advantage for this regimen over conventional temozolomide administration in the treatment of melanoma

    A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours

    Get PDF
    BACKGROUND: Poly adenosine diphosphate (ADP)-ribose polymerase (PARP) is essential in cellular processing of DNA damage via the base excision repair pathway (BER). The PARP inhibition can be directly cytotoxic to tumour cells and augments the anti-tumour effects of DNA-damaging agents. This study evaluated the optimally tolerated dose of olaparib (4-(3--4-fluorophenyl) methyl-1(2H)-one; AZD2281, KU0059436), a potent PARP inhibitor, with dacarbazine and assessed safety, toxicity, clinical pharmacokinetics and efficacy of combination treatment. PATIENTS AND METHODS: Patients with advanced cancer received olaparib (20-200 mg PO) on days 1-7 with dacarbazine (600-800 mg m(-2) IV) on day 1 (cycle 2, day 2) of a 21-day cycle. An expansion cohort of chemonaive melanoma patients was treated at an optimally tolerated dose. The BER enzyme, methylpurine-DNA glycosylase and its substrate 7-methylguanine were quantified in peripheral blood mononuclear cells. RESULTS: The optimal combination to proceed to phase II was defined as 100 mg bd olaparib with 600 mg m(-2) dacarbazine. Dose-limiting toxicities were neutropaenia and thrombocytopaenia. There were two partial responses, both in patients with melanoma. CONCLUSION: This study defined a tolerable dose of olaparib in combination with dacarbazine, but there were no responses in chemonaive melanoma patients, demonstrating no clinical advantage over single-agent dacarbazine at these doses

    Multi-scale investigation of uranium attenuation by arsenic at an abandoned uranium mine, South Terras

    Get PDF
    Detailed mineralogical analysis of soils from the UK’s historical key uranium mine, South Terras, was performed to elucidate the mechanisms of uranium degradation and migration in the 86 years since abandonment. Soils were sampled from the surface (0 – 2 cm) and near-surface (25 cm) in two distinct areas of ore processing activities. Bulk soil analysis revealed the presence of high concentrations of uranium (<1690 ppm), arsenic (1830 ppm) and beryllium (~250 ppm), suggesting pedogenic weathering of the country rock and ore extraction processes to be the mechanisms of uranium ore degradation. Micro-focus XRF analysis indicated the association of uranium with arsenic, phosphate and copper; ”-XRD data confirmed the presence of the uranyl-arsenate minerals metazeunerite (Cu(UO2)2(AsO4)2·8H2O) and metatorbernite (Cu(UO2)2(PO4)2·8H2O) to be ubiquitous. Our data are consistent with the solid solution of these two uranyl-mica minerals, not previously observed at uranium-contaminated sites. Crystallites of uranyl-mica minerals were observed to coat particles of jarosite and muscovite, suggesting that the mobility of uranium from degraded ores is attenuated by co-precipitation with arsenic and phosphate, which was not previously considered at this site

    A bidentate Polycomb Repressive-Deubiquitinase complex is required for efficient activity on nucleosomes

    Get PDF
    Attachment of ubiquitin to lysine 119 of Histone 2A (H2AK119Ub) is an epigenetic mark characteristic of repressed developmental genes, which is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here we report the crystal structure of the Drosophila PR-DUB, revealing that the deubiquitinase Calypso and its activating partner ASX form a 2:2 complex. The bidentate Calypso–ASX complex is generated by dimerisation of two activated Calypso proteins through their coiled-coil regions. Disrupting the Calypso dimer interface does not affect inherent catalytic activity, but inhibits removal of H2AK119Ub as a consequence of impaired recruitment to nucleosomes. Mutating the equivalent surface on the human counterpart, BAP1, also compromises activity on nucleosomes. Together, this suggests that high local concentrations drive assembly of bidentate PR-DUB complexes on chromatin—providing a mechanistic basis for enhanced PR-DUB activity at specific genomic foci, and the impact of distinct classes of PR-DUB mutations in tumorigenesis

    Application of BRET to monitor ligand binding to GPCRs

    Get PDF
    Bioluminescence resonance energy transfer (BRET) is a well-established method for investigating protein-protein interactions. Here we present a BRET approach to monitor ligand binding to G protein–coupled receptors (GPCRs) on the surface of living cells made possible by the use of fluorescent ligands in combination with a bioluminescent protein (NanoLuc) that can be readily expressed on the N terminus of GPCRs

    Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial

    Get PDF
    Background Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0°) compared with sitting-up (≄30°) head positioning in the first 24 hours of hospital admission for patients with acute stroke. Methods/Design We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0°) or sitting-up (≄30°) head position as a ‘business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (α 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period. Discussion HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke. Trial registration ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014

    O6-methylguanine-DNA methyltransferase depletion and DNA damage in patients with melanoma treated with temozolomide alone or with lomeguatrib

    Get PDF
    We evaluated the pharmacodynamic effects of the O6-methylguanine-DNA methyltransferase (MGMT) inactivator lomeguatrib (LM) on patients with melanoma in two clinical trials. Patients received temozolomide (TMZ) for 5 days either alone or with LM for 5, 10 or 14 days. Peripheral blood mononuclear cells (PBMCs) were isolated before treatment and during cycle 1. Where available, tumour biopsies were obtained after the last drug dose in cycle 1. Samples were assayed for MGMT activity, total MGMT protein, and O6-methylguanine (O6-meG) and N7-methylguanine levels in DNA. MGMT was completely inactivated in PBMC from patients receiving LM, but detectable in those on TMZ alone. Tumours biopsied on the last day of treatment showed complete inactivation of MGMT but there was recovery of activity in tumours sampled later. Significantly more O6-meG was present in the PBMC DNA of LM/TMZ patients than those on TMZ alone. LM/TMZ leads to greater MGMT inactivation, and higher levels of O6-meG than TMZ alone. Early recovery of MGMT activity in tumours suggested that more protracted dosing with LM is required. Extended dosing of LM completely inactivated PBMC MGMT, and resulted in persistent levels of O6-meG in PBMC DNA during treatment

    Novel anti-inflammatory peptides based on chemokine – glycosaminoglycan interactions reduce leukocyte migration and disease severity in a model of rheumatoid arthritis

    Get PDF
    Inflammation is characterized by the infiltration of leukocytes from the circulation and into the inflamed area. Leukocytes are guided throughout this process by chemokines. These are basic proteins that interact with leukocytes to initiate their activation and extravasation via chemokine receptors. This is enabled through chemokine immobilization by glycosaminoglycans (GAGs) at the luminal endothelial surface of blood vessels. A specific stretch of basic amino acids on the chemokine, often at the C terminus, interacts with the negatively charged GAGs, which is considered an essential interaction for the chemokine function. Short-chain peptides based on this GAG-binding region of the chemokines CCL5, CXCL8, and CXCL12γ were synthesized using standard Fmoc chemistry. These peptides were found to bind to GAGs with high affinity, which translated into a reduction of leukocyte migration across a cultured human endothelial monolayer in response to chemokines. The leukocyte migration was inhibited upon removal of heparan sulfate from the endothelial surface and was found to reduce the ability of the chemokine and peptide to bind to endothelial cells in binding assays and to human rheumatoid arthritis tissue. The data suggest that the peptide competes with the wild-type chemokine for binding to GAGs such as HS and thereby reduces chemokine presentation and subsequent leukocyte migration. Furthermore, the lead peptide based on CXCL8 could reduce the disease severity and serum levels of the proinflammatory cytokine TNF-α in a murine Ag-induced arthritis model. Taken together, evidence is provided for interfering with the chemokine-GAG interaction as a relevant therapeutic approach
    • 

    corecore