73 research outputs found

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag

    MNS1 Is Essential for Spermiogenesis and Motile Ciliary Functions in Mice

    Get PDF
    During spermiogenesis, haploid round spermatids undergo dramatic cell differentiation and morphogenesis to give rise to mature spermatozoa for fertilization, including nuclear elongation, chromatin remodeling, acrosome formation, and development of flagella. The molecular mechanisms underlining these fundamental processes remain poorly understood. Here, we report that MNS1, a coiled-coil protein of unknown function, is essential for spermiogenesis. We find that MNS1 is expressed in the germ cells in the testes and localizes to sperm flagella in a detergent-resistant manner, indicating that it is an integral component of flagella. MNS1–deficient males are sterile, as they exhibit a sharp reduction in sperm production and the remnant sperm are immotile with abnormal short tails. In MNS1–deficient sperm flagella, the characteristic arrangement of “9+2” microtubules and outer dense fibers are completely disrupted. In addition, MNS1–deficient mice display situs inversus and hydrocephalus. MNS1–deficient tracheal motile cilia lack some outer dynein arms in the axoneme. Moreover, MNS1 monomers interact with each other and are able to form polymers in cultured somatic cells. These results demonstrate that MNS1 is essential for spermiogenesis, the assembly of sperm flagella, and motile ciliary functions

    The GAA triplet-repeat is unstable in the context of the human FXN locus and displays age-dependent expansions in cerebellum and DRG in a transgenic mouse model

    Get PDF
    Friedreich ataxia (FRDA) is caused by homozygosity for FXN alleles containing an expanded GAA triplet-repeat (GAA-TR) sequence. This expanded GAA-TR sequence is unstable in somatic cells of FRDA patients, showing age-dependent expansions in dorsal root ganglia (DRG), the tissue where pathology occurs earliest and is most significant. This is thought to be the basis for the progressive, tissue-specific pathology seen in FRDA, but the mechanism(s) for this somatic instability is unknown. We show that transgenic mice containing the expanded GAA-TR sequence (190 or 82 triplets) in the context of the human FXN locus show tissue-specific and age-dependent somatic instability that mimics the human condition. Small pool PCR analysis, which allows quantitative analysis of instability by assaying individual transgenes in vivo, showed age-dependent expansions specifically in the cerebellum and DRG. The (GAA)190 allele showed some instability by 2 months, progressed at about 0.3 – 0.4 triplets/week, resulting in a significant number of expansions by 12 months. Repeat length determined the age of onset of somatic instability, and the rate and magnitude of expansion. Whereas the GAA-TR was unstable in the context of the human FXN locus, pure GAATR sequences at other genetic loci in the human and murine genomes showed no instability. These data indicate that somatic instability of the GAA-TR sequence in the human FXN gene is determined by a combination of unique cis and trans-acting factors. This mouse model will serve as a useful tool to delineate the mechanism(s) of diseasespecific somatic instability in FRDA

    The ISO long-wavelength spectrometer

    Get PDF
    The Long-Wavelength Spectrometer (LWS) is one of two complementary spectrometers aboard the European Space Agency's Infrared Space Observatory (ISO) (Kessler et al., 1996A&A...315L..49D). It operates over the wavelength range 43-196.9μm at either medium (about 150 to 200) or high (6800 to 9700) spectral resolving power. This Letter describes the instrument and its modes of operation; a companion paper (Swinyard et al, 1996) describes its performance and calibration

    Replication of TCF4 through Association and Linkage Studies in Late-Onset Fuchs Endothelial Corneal Dystrophy

    Get PDF
    Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of the corneal endothelium. Although progress has been made in understanding the genetic basis of FECD by studying large families in which the phenotype is transmitted in an autosomal dominant fashion, a recently reported genome-wide association study identified common alleles at a locus on chromosome 18 near TCF4 which confer susceptibility to FECD. Here, we report the findings of our independent validation study for TCF4 using the largest FECD dataset to date (450 FECD cases and 340 normal controls). Logistic regression with sex as a covariate was performed for three genetic models: dominant (DOM), additive (ADD), and recessive (REC). We found significant association with rs613872, the target marker reported by Baratz et al.(2010), for all three genetic models (DOM: P = 9.33×10−35; ADD: P = 7.48×10−30; REC: P = 5.27×10−6). To strengthen the association study, we also conducted a genome-wide linkage scan on 64 multiplex families, composed primarily of affected sibling pairs (ASPs), using both parametric and non-parametric two-point and multipoint analyses. The most significant linkage region localizes to chromosome 18 from 69.94cM to 85.29cM, with a peak multipoint HLOD = 2.5 at rs1145315 (75.58cM) under the DOM model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents evidence to support the role of the intronic TCF4 single nucleotide polymorphism rs613872 in late-onset FECD through both association and linkage studies

    Subcortical brain alterations in major depressive disorder:findings from the ENIGMA Major Depressive Disorder working group

    Get PDF
    The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen's d=-0.14, % difference=-1.24). This effect was driven by patients with recurrent MDD (Cohen's d=-0.17, % difference=-1.44), and we detected no differences between first episode patients and controls. Age of onset <= 21 was associated with a smaller hippocampus (Cohen's d=-0.20, % difference=-1.85) and a trend toward smaller amygdala (Cohen's d=-0.11, % difference=-1.23) and larger lateral ventricles (Cohen's d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status

    Keep off the grass?:Cannabis, cognition and addiction

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.In an increasing number of states and countries, cannabis now stands poised to join alcohol and tobacco as a legal drug. Quantifying the relative adverse and beneficial effects of cannabis and its constituent cannabinoids should therefore be prioritized. Whereas newspaper headlines have focused on links between cannabis and psychosis, less attention has been paid to the much more common problem of cannabis addiction. Certain cognitive changes have also been attributed to cannabis use, although their causality and longevity are fiercely debated. Identifying why some individuals are more vulnerable than others to the adverse effects of cannabis is now of paramount importance to public health. Here, we review the current state of knowledge about such vulnerability factors, the variations in types of cannabis, and the relationship between these and cognition and addiction.This work was supported by grants from the US National Institutes of Health to L.H.P. (AA020404, AA006420, AA022249 and AA017447) and by grants from the UK Medical Research Council to H.V.C. and C.J.A.M. (G0800268; MR/K015524/1)

    A graphics processing unit (GPU) approach to large eddy simulation (LES) for transport and contaminant dispersion

    No full text
    Recent advances in the development of large eddy simulation (LES) atmospheric models with corresponding atmospheric transport and dispersion (AT&D) modeling capabilities have made it possible to simulate short, time-averaged, single realizations of pollutant dispersion at the spatial and temporal resolution necessary for common atmospheric dispersion needs, such as designing air sampling networks, assessing pollutant sensor system performance, and characterizing the impact of airborne materials on human health. The high computational burden required to form an ensemble of single-realization dispersion solutions using an LES and coupled AT&D model has, until recently, limited its use to a few proof-of-concept studies. An example of an LES model that can meet the temporal and spatial resolution and computational requirements of these applications is the joint outdoor-indoor urban large eddy simulation (JOULES). A key enabling element within JOULES is the computationally efficient graphics processing unit (GPU)-based LES, which is on the order of 150 times faster than if the LES contaminant dispersion simulations were executed on a central processing unit (CPU) computing platform. JOULES is capable of resolving the turbulence components at a suitable scale for both open terrain and urban landscapes, e.g., owing to varying environmental conditions and a diverse building topology. In this paper, we describe the JOULES modeling system, prior efforts to validate the accuracy of its meteorological simulations, and current results from an evaluation that uses ensembles of dispersion solutions for unstable, neutral, and stable static stability conditions in an open terrain environment
    corecore