16,279 research outputs found

    Rodents and humans are able to detect the odour of L-Lactate.

    Get PDF
    This is the final version of the article. Available from PLoS via the DOI in this record.L-Lactate (LL) is an essential cellular metabolite which can be used to generate energy. In addition, accumulating evidence suggests that LL is used for inter-cellular signalling. Some LL-sensitive receptors have been identified but we recently proposed that there may be yet another unknown G-protein coupled receptor (GPCR) sensitive to LL in the brain. Olfactory receptors (ORs) represent the largest family of GPCRs and some of them are expressed outside the olfactory system, including brain, making them interesting candidates for non-olfactory LL signalling. One of the "ectopically" expressed ORs, Olfr78 in mice (Olr59 in rats and OR51E2 in humans), reportedly can be activated by LL. This implies that both rodents and humans should be able to detect the LL odour. Surprisingly, this has never been demonstrated. Here we show that mice can detect the odour of LL in odour detection and habituation-dishabituation tasks, and discriminate it from peppermint and vanilla odours. Behaviour of the Olfr78 null mice and wildtype mice in odour detection task was not different, indicating that rodents are equipped with more than one LL-sensitive OR. Rats were also able to use the smell of LL as a cue in an odour-reward associative learning task. When presented to humans, more than 90% of participants detected a smell of LL in solution. Interestingly, LL was perceived differently than acetate or propionate-LL was preferentially reported as a pleasant sweet scent while acetate and propionate were perceived as repulsive sour/acid smells. Subjective perception of LL smell was different in men and women. Taken together, our data demonstrate that both rodents and humans are able to detect the odour of LL. Moreover, in mice, LL perception is not purely mediated by Olfr78. Discovery of further LL-sensitive OR might shed the light on their contribution to LL signalling in the body.This work was supported by BBSRC: BB/L019396/1, BB/K009192/1; and MRC MR/L020661/1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Flavour Physics in the Soft Wall Model

    Get PDF
    We extend the description of flavour that exists in the Randall-Sundrum (RS) model to the soft wall (SW) model in which the IR brane is removed and the Higgs is free to propagate in the bulk. It is demonstrated that, like the RS model, one can generate the hierarchy of fermion masses by localising the fermions at different locations throughout the space. However, there are two significant differences. Firstly the possible fermion masses scale down, from the electroweak scale, less steeply than in the RS model and secondly there now exists a minimum fermion mass for fermions sitting towards the UV brane. With a quadratic Higgs VEV, this minimum mass is about fifteen orders of magnitude lower than the electroweak scale. We derive the gauge propagator and despite the KK masses scaling as mn2nm_n^2\sim n, it is demonstrated that the coefficients of four fermion operators are not divergent at tree level. FCNC's amongst kaons and leptons are considered and compared to calculations in the RS model, with a brane localised Higgs and equivalent levels of tuning. It is found that since the gauge fermion couplings are slightly more universal and the SM fermions typically sit slightly further towards the UV brane, the contributions to observables such as ϵK\epsilon_K and ΔmK\Delta m_K, from the exchange of KK gauge fields, are significantly reduced.Comment: 33 pages, 15 figures, 5 tables; v2: references added; v3: modifications to figures 4,5 and 6. version to appear in JHE

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure

    Visualizing the microscopic coexistence of spin density wave and superconductivity in underdoped NaFe1-xCoxAs

    Full text link
    Although the origin of high temperature superconductivity in the iron pnictides is still under debate, it is widely believed that magnetic interactions or fluctuations play an important role in triggering Cooper pairing. Because of the relevance of magnetism to pairing, the question of whether long range spin magnetic order can coexist with superconductivity microscopically has attracted strong interests. The available experimental methods used to answer this question are either bulk probes or local ones without control of probing position, thus the answers range from mutual exclusion to homogeneous coexistence. To definitively answer this question, here we use scanning tunneling microscopy to investigate the local electronic structure of an underdoped NaFe1-xCoxAs near the spin density wave (SDW) and superconducting (SC) phase boundary. Spatially resolved spectroscopy directly reveal both the SDW and SC gap features at the same atomic location, providing compelling evidence for the microscopic coexistence of the two phases. The strengths of the SDW and SC features are shown to anti correlate with each other, indicating the competition of the two orders. The microscopic coexistence clearly indicates that Cooper pairing occurs when portions of the Fermi surface (FS) are already gapped by the SDW order. The regime TC < T < TSDW thus show a strong resemblance to the pseudogap phase of the cuprates where growing experimental evidences suggest a FS reconstruction due to certain density wave order. In this phase of the pnictides, the residual FS has a favorable topology for magnetically mediated pairing when the ordering moment of the SDW is small.Comment: 18 pages, 4 figure

    CP Violation in Supersymmetry with Effective Minimal Flavour Violation

    Full text link
    We analyze CP violation in supersymmetry with Effective Minimal Flavour Violation, as recently proposed in arXiv:1011.0730. Unlike the case of standard Minimal Flavour Violation, we show that all the phases allowed by the flavour symmetry can be sizable without violating existing Electric Dipole Moment constraints, thus solving the SUSY CP problem. The EDMs at one and two loops are precisely analyzed as well as their correlations with the expected CP asymmetries in B physics.Comment: 22 pages, 7 figures. v2: Discussion in section 2 extended, conclusions unchanged. Matches published versio

    Top mass dependent alpha_s^3 corrections to B-meson mixing in the MSSM

    Full text link
    We compute the top mass dependent NLO strong interaction matching conditions to the Delta F=2 effective Hamiltonian in the general MSSM. We study the relevance of such corrections, comparing its size with that of previously known NLO corrections in the limit mt->0, in scenarios with degeneracy, alignment, and hierarchical squarks. We find that, while these corrections are generally small, there are regions in the parameter space where the contributions to the Wilson coefficients C1 and C4 could partially overcome the expected suppression m_t/M_SUSY.Comment: 15 pages, 6 figure

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure
    corecore