Although the origin of high temperature superconductivity in the iron
pnictides is still under debate, it is widely believed that magnetic
interactions or fluctuations play an important role in triggering Cooper
pairing. Because of the relevance of magnetism to pairing, the question of
whether long range spin magnetic order can coexist with superconductivity
microscopically has attracted strong interests. The available experimental
methods used to answer this question are either bulk probes or local ones
without control of probing position, thus the answers range from mutual
exclusion to homogeneous coexistence. To definitively answer this question,
here we use scanning tunneling microscopy to investigate the local electronic
structure of an underdoped NaFe1-xCoxAs near the spin density wave (SDW) and
superconducting (SC) phase boundary. Spatially resolved spectroscopy directly
reveal both the SDW and SC gap features at the same atomic location, providing
compelling evidence for the microscopic coexistence of the two phases. The
strengths of the SDW and SC features are shown to anti correlate with each
other, indicating the competition of the two orders. The microscopic
coexistence clearly indicates that Cooper pairing occurs when portions of the
Fermi surface (FS) are already gapped by the SDW order. The regime TC < T <
TSDW thus show a strong resemblance to the pseudogap phase of the cuprates
where growing experimental evidences suggest a FS reconstruction due to certain
density wave order. In this phase of the pnictides, the residual FS has a
favorable topology for magnetically mediated pairing when the ordering moment
of the SDW is small.Comment: 18 pages, 4 figure