1,528 research outputs found

    The Parkinson's phenome-traits associated with Parkinson's disease in a broadly phenotyped cohort

    Get PDF
    In order to systematically describe the Parkinson's disease phenome, we performed a series of 832 cross-sectional case-control analyses in a large database. Responses to 832 online survey-based phenotypes including diseases, medications, and environmental exposures were analyzed in 23andMe research participants. For each phenotype, survey respondents were used to construct a cohort of Parkinson's disease cases and age-matched and sex-matched controls, and an association test was performed using logistic regression. Cohorts included a median of 3899 Parkinson's disease cases and 49,808 controls, all of European ancestry. Highly correlated phenotypes were removed and the novelty of each significant association was systematically assessed (assigned to one of four categories: known, likely, unclear, or novel). Parkinson's disease diagnosis was associated with 122 phenotypes. We replicated 27 known associations and found 23 associations with a strong a priori link to a known association. We discovered 42 associations that have not previously been reported. Migraine, obsessive-compulsive disorder, and seasonal allergies were associated with Parkinson's disease and tend to occur decades before the typical age of diagnosis for Parkinson's disease. The phenotypes that currently comprise the Parkinson's disease phenome have mostly been explored in relatively small purpose-built studies. Using a single large dataset, we have successfully reproduced many of these established associations and have extended the Parkinson's disease phenome by discovering novel associations. Our work paves the way for studies of these associated phenotypes that explore shared molecular mechanisms with Parkinson's disease, infer causal relationships, and improve our ability to identify individuals at high-risk of Parkinson's disease

    The Classification of T Dwarfs

    Get PDF
    We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 μm{\mu}m. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 μm{\mu}m) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 μm{\mu}m K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.Comment: 15 pages, 6 figures, conference proceedings for IAU Ultracool Dwarf Stars session, ed. I. Steele & H. Jone

    Lymphangiogenesis in myocardial remodelling after infarction

    Get PDF
    Ishikawa Y, Akishima-Fukasawa Y, Ito K, Akasaka Y, Tanaka M, Shimokawa R, Kimura-Matsumoto M, Morita H, Sato S, Kamata I & Ishii T (2007) Histopathology51, 345–35

    Epidemic space

    Get PDF
    The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)

    Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    Get PDF
    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns

    No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men.

    Get PDF
    During whole-body exercise in health, maximal oxygen uptake (V̇O2max) is typically attained at or immediately prior to the limit of tolerance (LoT). At the V̇O2max and LoT of incremental exercise, a fundamental, but unresolved, question is whether maximal evocable power can increase above the task requirement, i.e. whether there is a "power reserve" at the LoT. Using an instantaneous switch from cadence-independent to isokinetic cycle ergometry, we determined maximal evocable power at the limit of ramp-incremental exercise. We hypothesized that in endurance-trained men at LoT, maximal (4s) isokinetic power would not differ from power required by the task. Baseline isokinetic power at 80rpm (PISO; measured at the pedals) and summed integrated EMG from 5 leg muscles (∑iEMG) were measured in 12 endurance-trained men (V̇O2max=4.2±1.0 l•min(-1)). Participants then completed a ramp-incremental exercise test (20-25W•min(-1)), with instantaneous measurement of PISO and ∑iEMG at the LoT. PISO decreased from 788±103W at baseline to 391±72W at LoT, which was not different from the required ramp-incremental flywheel power (352±58W; p>0.05). At LoT, the relative reduction in PISO was greater than the relative reduction in the isokinetic ∑iEMG (50±9 vs. 63±10% of baseline; p<0.05). During maximal ramp incremental exercise in endurance-trained men, maximum voluntary power is not different from the power required by the task, and is consequent to both central and peripheral limitations in evocable power. The absence of a power reserve suggests both the perceptual and physiological limits of maximum voluntary power production are not widely dissociated at LoT in this population

    Emerging Infectious Disease leads to Rapid Population Decline of Common British Birds

    Get PDF
    Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period
    corecore