40 research outputs found

    The APPswe/PS1A246E mutations in an astrocytic cell line leads to increased vulnerability to oxygen and glucose deprivation, Ca2+ dysregulation and mitochondrial abnormalities

    Get PDF
    Growing evidence suggests a close relationship between Alzheimer's Disease (AD) and cerebral hypoxia. Astrocytes play a key role in brain homeostasis and disease states, while some of the earliest changes in AD occur in astrocytes. We have therefore asked whether mutations associated with AD increase astrocyte vulnerability to ischemia. Two astroglioma cell lines derived from APPSWE /PS1A246E (APP, amyloid precursor protein; PS1, presenilin 1) transgenic mice and controls from normal mice were subjected to oxygen and glucose deprivation (OGD), an in vitro model of ischemia. Cell death was increased in the APPSWE /PS1A246E line compared to the control. Increasing extracellular calcium concentration ([Ca2+ ]) exacerbated cell death in the mutant but not in the control cells. In order to explore cellular Ca2+ homeostasis the cells were challenged with ATP or thapsigargin and [Ca2+ ] was measured by fluorescence microscopy. Changes in cytosolic Ca2+ concentration ([Ca2+ ]c ) were potentiated in the APPSWE /PS1A246E transgenic line. Mitochondrial function was also altered in the APPSWE /PS1A246E astroglioma cells; mitochondrial membrane potential and production of reactive oxygen species were increased while mitochondrial basal respiratory rate and ATP production were decreased compared to control astroglioma cells. These results suggest that AD mutations in astrocytes make them more sensitive to ischemia; Ca2+ dysregulation and mitochondrial dysfunction may contribute to this increased vulnerability. Our results also highlight the role of astrocyte dyshomeostasis in the pathophysiology of neurodegenerative brain disorders

    Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying

    Get PDF
    Benthic macroinvertebrates inhabit the streambed sediments of temporary streams during drying events. Fine sediment (< 2 mm in diameter) deposition and clogging of interstitial pathways reduces the connectivity between benthic and subsurface habitats, potentially inhibiting macroinvertebrate vertical movements. Direct observations within subsurface sediments are, however, inherently difficult. As a result, confirmation of macroinvertebrate vertical movement, and the effect of fine sediment, is limited. We used laboratory mesocosms containing transparent gravel sized particles (10–15 mm) to facilitate the direct observation and tracking of vertical movements by Gammarus pulex in response to water level reduction and sedimentation. Seven sediment treatments comprised two fine sediment fractions (small: 0.125–0.5 mm, coarse sand: 0.5–1 mm) deposited onto the surface of the substrate, and a control treatment where no fine sediment was applied. We found that G. pulex moved into the subsurface gravel sediments in response to drying, but their ability to remain submerged during water level reduction was impeded by fine sediment deposition. In particular deposition of the coarser sand fraction clogged the sediment surface, limiting vertical movements. Our results highlight the potential effect of sedimentation on G. pulex resistance to drying events in streams

    Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction

    Get PDF
    Abstract Three major mechanisms contribute to right ventricular (RV) pump function: (i) shortening of the longitudinal axis with traction of the tricuspid annulus towards the apex; (ii) inward movement of the RV free wall; (iii) bulging of the interventricular septum into the RV and stretching the free wall over the septum. The relative contribution of the aforementioned mechanisms to RV pump function may change in different pathological conditions. Our aim was to develop a custom method to separately assess the extent of longitudinal, radial and anteroposterior displacement of the RV walls and to quantify their relative contribution to global RV ejection fraction using 3D data sets obtained by echocardiography. Accordingly, we decomposed the movement of the exported RV beutel wall in a vertex based manner. The volumes of the beutels accounting for the RV wall motion in only one direction (either longitudinal, radial, or anteroposterior) were calculated at each time frame using the signed tetrahedron method. Then, the relative contribution of the RV wall motion along the three different directions to global RV ejection fraction was calculated either as the ratio of the given direction’s ejection fraction to global ejection fraction and as the frame-by-frame RV volume change (∆V/∆t) along the three motion directions. The ReVISION (Right VentrIcular Separate wall motIon quantificatiON) method may contribute to a better understanding of the pathophysiology of RV mechanical adaptations to different loading conditions and diseases

    Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale

    B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis

    Get PDF
    Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgMlomIgD+ mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site

    Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation

    Full text link

    Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events

    No full text
    Cyclin A/cdk2 has a role in progression through Sphase, and a large pool is also activated in G(2) phase. Here we report that this G(2) phase pool regulates the timing of progression into mitosis. Knock down of cyclin A by siRNA or addition of a specific cdk2 small molecule inhibitor delayed entry into mitosis by delaying cells in G(2) phase. The G(2) phase-delayed cells contained elevated levels of inactive cyclin B/cdk1. However, increased microtubule nucleation at the centrosomes was observed, and the centrosomes stained for markers of cyclin B/cdk1 activity. Both microtubule nucleation at the centrosomes and the phosphoprotein markers were lost with short-term treatment of the cdk1/2 inhibitor roscovitine but not the Mek1/2 inhibitor U0126. Cyclin A/cdk2 localized at the centrosomes in late G(2) phase after separation of the centrosomes but before the start of prophase. Thus G(2) phase cyclin A/cdk2 controls the timing of entry into mitosis by controlling the subsequent activation of cyclin B/cdk1, but also has an unexpected role in coordinating the activation of cyclin B/cdk1 at the centrosome and in the nucleus
    corecore