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ABSTRACT 

Growing evidence suggests a close relationship between Alzheimer´s Disease 

(AD) and cerebral hypoxia. Astrocytes play a key role in brain homeostasis and disease 

states, while some of the earliest changes in AD occur in astrocytes. We have therefore 

asked whether mutations associated with AD increase astrocyte vulnerability to 

ischemia. Two astroglioma cell lines derived from APPSWE/PS1A246E (APP, amyloid 

precursor protein; PS1, presenilin 1) transgenic mice and controls from normal mice 

were subjected to oxygen and glucose deprivation (OGD), an in vitro model of 

ischemia. Cell death was increased in the APPSWE/PS1A246E line compared to the 

control. Increasing extracellular calcium concentration ([Ca2+]) exacerbated cell death in 

the mutant but not in the control cells. In order to explore cellular Ca2+ homeostasis the 

cells were challenged with ATP or thapsigargin and [Ca2+] was measured by 

fluorescence microscopy. Changes in cytosolic Ca2+ concentration ([Ca2+]c) were 

potentiated in the APPSWE/PS1A246E transgenic line. Mitochondrial function was also 

altered in the APPSWE/PS1A246E astroglioma cells; mitochondrial membrane potential 

and production of reactive oxygen species were increased while mitochondrial basal 

respiratory rate and ATP production were decreased compared to control astroglioma 

cells. These results suggest that AD mutations in astrocytes make them more sensitive 

to ischemia; Ca2+ dysregulation and mitochondrial dysfunction may contribute to this 

increased vulnerability. Our results also highlight the role of astrocyte dyshomeostasis 

in the pathophysiology of neurodegenerative brain disorders.  
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INTRODUCTION 

Many studies, including observational epidemiological studies, have proposed a 

relationship between vascular risk factors and Alzheimer’s disease (AD). The link 

between AD and cerebrovascular disease has been documented by the following 

findings: (i) AD may increase the likelihood of suffering stroke and vice versa (Pluta 

2004a, Pluta 2004b), (ii) the accumulation of the β amyloid peptide in the brain of AD 

patients leads to neuronal (Hardy & Selkoe 2002) and vascular toxicity (Paris et al. 

2004a, Paris et al. 2004b) and also,  iii) AD and atherosclerosis share genetic and 

environmental risk factors such as ApoE ε4 polymorphism, hypercholesterolemia, 

hypertension, obesity and metabolic syndrome, among others (Casserly & Topol 2004).  

Astrocytes are the most abundant cells in the central nervous system (CNS). For 

decades, they were regarded as a passive supporting element in the brain, but this 

perception has dramatically changed in recent years. Astrocyte dysfunction seems to 

play a key role in the pathophysiology of many CNS diseases. For example, 

Verkhratsky et al. (Verkhratsky et al. 2010) have proposed the astrocyte as being 

potentially responsible for the early synaptic failure observed in AD. Besides the 

classical structural properties, astrocytes have metabolic, homeostatic, signaling and 

developmental functions. Astrocytes regulate the extracellular concentration of K+, 

glutamate, water and pH (Chen & Swanson 2003). They also encompass cerebral 

microcirculation with brain activity, as activity-induced Ca2+ transients in astrocytes are 

related to changes in vascular pressure and, thus, participate in regulating cerebral blood 

flow.  

It has been reported that both human and mouse models of AD show astrogliosis 

at late stages of the disease (Olabarria et al. 2010, Nagele et al. 2003). However, at 
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early stages of the disease a degeneration/atrophy of these cells has been found in a 

triple transgenic mouse model of AD (Olabarria et al. 2010, Rodriguez et al. 2009). 

Moreover, during ischemia astrocytes take up excessive K+ and glutamate (Rothstein et 

al. 1996) and release trophic factors which limit the extent of stroke (Anderson et al. 

2003, Swanson et al. 2004). After a stroke, astrocytes also play a crucial role in 

neuronal survival and recovery (Li et al. 2014). Nevertheless, if astrocytes are 

compromised, they might contribute to increase neuronal cell death and brain damage 

(Zhao & Rempe 2010). 

Therefore, our aim was to study the role of astroglia in the relationship between 

AD and brain ischemia. We employed a control astroglioma cell line and another line 

harboring the APPswe/PS1A246E AD-related mutations. We found that the AD 

mutated astroglial cell line showed increased vulnerability to oxygen and glucose 

deprivation; we also found altered Ca2+ homeostasis and impaired mitochondrial 

function in these cells, which may contribute to their vulnerability to ischemia. 
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MATERIALS AND METHODS 

Materials 

 RPMI media and heat-inactivated bovine fetal serum were purchased from 

Invitrogen (Madrid, Spain). Penicillin/streptomycin and 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) were obtained from Sigma-Aldrich (Madrid, 

Spain). Lactate dehydrogenase (LDH) cytotoxicity detection kit was acquired from 

Roche Diagnostics (Mannheim, Germany). Tetramethylrhodamine, ethyl ester, 

perchlorate (TMRE), 2´, 7´- dichlorofluorescein diacetate (H2DCFDA), 

dihydroethidium, Fluo-4, Rhod-2 and Hoechst were purchased from Molecular Probes 

(Invitrogen, Madrid, Spain).  

Culture and maintenance of astroglioma cell lines 

 The control and APPswe/PS1A246E astroglioma cell lines were generated by 

injecting C57BL/6J wild type (WT) and APPswe/PS1A246E mice with the carcinogen 

20-methylcholanthrene (20-MT) in cortices as previously described (Serrano et al. 

2010, Seyfried et al. 1992). Briefly, 9 month-old mice kindly donated Professor Ignacio 

Torres (Instituto Cajal, Madrid, Spain), were deeply anesthesized with pentobarbital (10 

mg/kg) and atropine (90 mg/kg). Pellets of 20-MT were deeply implanted in the right 

parietal subcortex with the help of astereotaxic frame. Mice were observed periodically  

after the surgery and were sacrificed when their comfort or quality of life was 

compromised.  The control cells correspond to the CT-2A cell line, which was kindly 

donated by Prof. Seyfried (Boston, MA, USA). For generating the APPswe/PS1A246E 

cells, animals developed astrogliomas after 20-MT treatment, they were extracted, 

maintained in culture as a regular cell line and characterized (Ortega-Martinez 2015). 
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 Both astroglioma cell lines were maintained in RPMI media supplemented with 

10% of heat-inactivated fetal bovine serum (Invitrogen, Madrid, Spain), 4 U/mL 

penicillin and 4 µg/mL streptomycin (Sigma-Aldrich, Madrid, Spain). Cells were grown 

in flasks containing supplemented media, maintained at 37ºC and 5% CO2 humidified 

air and passed once per week. Control and APPswe/PS1A246E cells were cultured in 

48 well-plates at a seeding density of 20,000 cells per well. Cells were used after 48 

hours at passages between 4 and 13 after thawing. Cell lines were last authenticated by 

immunofluorescence during the review process. Both cell lines showed specific 

astrocytic markers (vimentin, S100B and SOX2) and no neuronal markers (NeuN and 

MAP2) (Suppl. Fig. 2 and 3).  

Oxygen and glucose deprivation/reoxygenation model 

 Oxygen and glucose deprivation/reoxygenation (OGD/reox) was used as an in 

vitro model of ischemia. For the OGD, the culture media was replaced by a solution 

containing (in mM): NaCl 137.93, KCl 5.36, CaCl2 2, MgSO4 1.19, NaHCO3 26, 

KH2PO4 1.18 and 2-deoxyglucose 11 (Sigma-Aldrich) previously bubbled with a gas 

mixture containing 95% N2/5% CO2. Thereafter, cell plates were placed in an airtight 

chamber (Billups and Rothenberg, Inc) and were exposed for 5 min to 95% N2/5% CO2 

gas flow to ensure purging of residual oxygen and the chamber was closed tightly and 

maintained at 37ºC for 4 hours. Control cells were treated with a solution similar to the 

OGD solution but containing 15 mM glucose instead of 2-deoxyglucose and placed in a 

normoxic atmosphere during 4 hours. At the end of the 4 h OGD period, cells were 

withdrawn from the ischemia chamber and the OGD solution was replaced by control 

culture media and kept for a further 14 h in an incubator at 37ºC in a humidified 

atmosphere (see protocol in Fig. 1A). At the end of the experiment, viability 

quantification by MTT and/or LDH was carried out. Reactive oxygen species (ROS) 
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levels were analysed by DCF fluorescence and mitochondrial membrane potential by 

TMRE staining. 

Measurement of cell viability 

Cell viability was measured using MTT (Sigma-Aldrich, Madrid, Spain) and 

lactate dehydrogenase (LDH) techniques. The MTT method is based in the ability of 

mitochondrial dehydrogenases of living cells to reduce MTT to produce a precipitated 

formazan, as previously described (Liu et al. 1997). MTT (5 µg/mL) was incubated 

during 2 hours at 37ºC; then, the media was removed and the precipitated formazan was 

solubilized with 300 µl of dimethyl sulfoxide. Cellular viability was quantified 

spectrophotometrically at a wavelength of 550 nm. Basal condition, i.e. cells not 

exposed to OGD/reox, was considered as 100% viability and the rest of the variables 

were normalised with respect to that value. 

 Measurement of LDH activity was assessed using a cytotoxicity cell death kit 

(Roche Diagnostics, Mannheim, Germany) according to the manufacturer’s instructions. 

LDH is a cytosolic enzyme that is released to the extracellular media in necrotic cell 

death. Extracellular and intracellular LDH were measured taking extracellular media or 

cellular lysates, respectively and total LDH activity was determined as the sum of 

extracellular plus intracellular measurements. Results were expressed as the percentage 

of extracellular LDH compared with total LDH activity. 

Fluorescence assays 

 Mitochondrial membrane potential was assessed by TMRE (100 nM) 

fluorescence. TMRE is a positively-charged dye that accumulates within the relatively 

negative milieu of mitochondria leading to fluorescence emission at 574 nm when 
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excited at 549 nm. The more negative the mitochondrial membrane is, the more TMRE 

accumulates in the mitochondria, leading to an increase in fluorescence. 

 The fluorescent indicator H2DCFDA was used to measure ROS production. 

Cells were incubated with 10 µM H2DCFDA which is a cell-permeable dye that diffuses 

into cells. After entering into the cell, it is deacetylated by intracellular esterases and in 

the presence of ROS it is oxidized to dichlorofluorescein (DCF), a green fluorescent dye 

whose wavelengths of excitation and emission are 485 and 520 nm, respectively.  

 Results were normalised using the cell-permeable DNA stain Hoechst (1 

µg/mL). Wavelengths of excitation and emission of Hoechst were 350 and 460 nm, 

respectively. Cells were equilibrated with all fluorescent dyes for 20 minutes at 37ºC. 

 Fluorescence intensity was measured using an inverted NIKON eclipse T2000-U 

microscope (Nikon Instruments, Europe, Badhoevedorp, Netherlands). Images were 

taken at magnifications of 20x. Analysis of fluorescence imaging data was performed 

using Metamorph program version 7.0 (Molecular Devices, LLC, Sunnyvale, CA, 

USA). The average intensity of control cells in basal condition was considered 100% so 

that the rest of variables were normalised to this value.  

Cytosolic Ca2+ measurements by fluorescence microscopy 

The fluorescent Ca2+ indicator Fluo-4 AM was used to measure cytosolic-free 

Ca2+ levels in live cells. One day after seeding on Ø 22 mm cover slips and 50% 

confluency, cells were loaded with 5 µM Fluo-4 AM in the presence of 0.005% (w/v) 

pluronic acid (15 min incubation at RT~21 ○C). The loading solution was then removed 

and cells were washed twice with modified Hanks’ Buffered Salt Solution (HBSS 138 

mM NaCl, 5.4 mM KCl, 0.25 mM Na2HPO4, 0.44 mM KH2PO4, 0.414 mM CaCl2, 1.0 

mM MgSO4, 4.2 mM NaHCO3, pH 7.4). Each cover slip was assembled into a purpose-
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built chamber and a fresh aliquot of modified HBSS was added to the cells and placed 

on the stage of Zeiss 510 confocal laser scanning microscope. The temperature in the 

chamber of the microscope was maintained at 37○C. Images were acquired for 120 or 

700 s using a HCX PLAPO 40X/1.25-0.75 oil immersion CS objective. Acquired 

images were analyzed with ImageJ (National Institutes of Health, USA). For 

thapsigargin/capacitative Ca2+ entry experiments, the cells were incubated first in 

modified HBSS without Ca2+. Following a recording time of 10 seconds, 1 µM 

thapsigargin was added to release Ca2+ from the endoplasmic reticulum (ER). Finally, 

400 s thereafter 1 mM Ca2+ was introduced in the recording media eliciting a Ca2+ 

capacitative entry (CCE) response.  

Measurement of mitochondrial oxygen consumption 

Mitochondrial oxygen consumption rate (OCR) was assessed using the XF24 

Extracellular Analyzer (Seahorse Bioscience, North Billerica, MA). Briefly, cells were 

plated in XF24 cell cultures microplates (Seahorse Bioscience) and cultured during 24 h 

in order to obtain a homogenous monolayer. For equilibration, cells were incubated 

with unbuffered Dulbecco’s modified Eagle’s Medium (DMEM) supplemented with 25 

mM glucose, 1 mM pyruvate and 2 mM glutamine at 37ºC in a CO2-free incubator 

during 1 h prior to the experiment. A calibration cartridge (Seahorse Bioscience) was 

equilibrated overnight and afterwards loaded with unbuffered DMEM (port A) and 5 

µg/ml oligomycin (port B) and 1 µM rotenone plus 1 µM antimycin A (port C), all 

obtained from Sigma-Aldrich (Madrid, Spain). Non-mitochondrial respiration was 

calculated as OCR after the administration of rotenone + antimycin and this value was 

subtracted to all measures. Basal respiration was calculated as the OCR after 

administration of unbuffered DMEM and ATP turnover as the difference between Basal 

Respiration and OCR after oligomycin administration. Results were normalized to total 
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protein content using Pierce BCA protein assay kit (Thermo Fisher Scientific, Madrid, 

Spain).   

ATP measurement 

ATP production was determined with an ATP Assay Kit (Fluorometric, ab83355, 

Abcam, Cambridge, United Kingdom). ATP production rate was determined following 

the protocol described by the manufacturer. Firstly, cells were washed with cold PBS 

and resuspended in 100 µl of ATP assay buffer. Then, the cells were quickly 

homogenized by pipetting up and down, centrifuged for 2 min at 4°C (13,000 rpm) to 

remove any insoluble material. Thereafter, the supernatant was collected and transferred 

to a clean tube and kept on ice. 400 µl of ATP assay buffer and 100 µl of ice-cold 

perchloric acid (4 M) were added to the homogenate to deproteinate the samples. The 

homogenates were vortexed briefly and incubated on ice for 5 minutes. The homogenate 

was centrifuged at 13,000 rpm for 2 min at 4°C and the supernatant was transferred to a 

fresh tube. The supernatant volume was measured and an equal volume of ice-cold 2 M 

KOH was added. Finally, the homogenate was centrifuged at 13,000 rpm 15 min at 4°C 

and the supernatant was collected. 50 µl of ATP reaction mix and 50 µl of sample were 

added to each well and incubated at room temperature for 30 min, protected from light. 

The samples were measured on a microplate reader at 535/587 nm.  

Mitochondrial and cytosolic Ca2+ assays using a microplate reader 

Cells were plated in bottom transparent 96-well black plates and cultured during 

24 h at 37ºC. Before the experiment, cells were loaded with 5 µM Fluo-4 AM (to 

measure cytosolic Ca2+ levels) or 3 µM Rhod-2 AM (to measure mitochondrial Ca2+ 

levels) (Thermo Fisher Scientific, Madrid, Spain) in non-supplemented RPMI media (+ 

0.005% w/v pluronic acid) for 1 h at 37ºC. Afterwards, cells were washed twice with 
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Krebs-HEPES solution (in mM): 140 NaCl, 5.6 KCl, 1.2 MgCl2, 0.4 CaCl2, 10 HEPES, 

11 D-glucose, pH 7.4. To induce cytosolic and mitochondrial Ca2+ increases, a 

concentrated solution of ATP was injected to each well to obtain a final concentration of 

10 µM. Fluorescence measurements were carried out using a microplate reader 

(FLUOstar Optima, BMG, Germany). Wavelengths of excitation and emission were 

494/506 nm (Fluo-4 AM) and 552/581 nm (Rhod-2 AM), respectively. At the end of the 

experiment, 5 % triton and 1mM MnCl2 were added to each well to calculate maximum 

fluorescence (Fmax) and minimum fluorescence (Fmin) respectively. ATP-induced 

responses were expressed as a percentage of the fluorescence value at each time point 

(% Ft). This was calculated by subtracting the fluorescence at a given time (Ft) to the 

basal-fluorescence value before ATP injection (F0) and divided by the Fmax-Fmin 

fluorescence, calculated using the following formula: 

% Ft = (Ft-F0) / (Fmax-Fmin) * 100 

 The maximum % fluorescence intensity for Fluo-4 (Maximum % [Ca2+]c) 

and Rhod-2 (Maximum [Ca2+]mit) were obtained for each experiment. All experiments 

were performed in triplicates and replicated 4 times.  

Statistical analysis 

 Statistical analysis was performed using GraphPad Prism 5.0 (La Jolla, USA). 

To compare differences between two groups, Student’s t-test (Gaussian distribution of 

data) or Mann Whitney test (non-Gaussian distribution of data) were used. Data 

distribution was considered Gaussian after passing the Kolmogorov-Smirnov test or the 

F-test to compare variances when n<5. To compare multiple variables, two-way 

ANOVA was used, followed by a Bonferroni post hoc test to compare replicate means. 

Statistical differences were considered when P<0.05. 
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RESULTS 

1. Vulnerability of APPswe/PS1A246E astroglioma cells to OGD/reoxygenation 

To study the influence of AD mutations on astroglial responses to an ischemic 

episode, we exposed control and APPswe/PS1A246E mutated astroglial cell lines to 

oxygen and glucose deprivation followed by reoxygenation (OGD/reox). Both cell lines 

were subjected to 4 h of OGD followed by 14 hours of reoxygenation (Fig. 1A). Cell 

viability was measured as LDH released into the extracellular media and MTT 

metabolism. The OGD/reox paradigm increased cell death far more in the 

APPswe/PS1A246E cells than in controls; LDH release was increased by 25% and 

MTT reduction was decreased by 40%, while in the control cell line LDH release was 

increased by 11% and MTT metabolism was unchanged (Fig. 1C and D). Thus, 

APPswe/PS1A246E mutations increased astrocyte vulnerability to ischemia. In line 

with these results, bright field microphotographs (Fig. 1B), showed a decrease in cell 

number in APPswe/PS1A246E cells when compared to control after OGD/reox. In the 

analysis of % LDH release after OGD/reox (Fig. 1C), the two-way ANOVA revealed a 

significant effect of treatment [F1,12 = 42.11, P <0.01], a significant effect of genotype 

[F1,12 = 5.382, P < 0.05] and a significant treatment × genotype interaction 

[F1,12 = 1.334, P > 0.05]. In the analysis of % MTT metabolism after OGD/reox (Fig. 

1D), the two-way ANOVA revealed a significant effect of treatment [F1,14 = 16.57, 

P <0.01], a significant effect of genotype [F1,14 = 7.214, P < 0.05] and a significant 

treatment × genotype interaction [F1,14 = 7.214, P > 0.05]. It should be noted that similar 

results were obtained with LDH and MTT assays. Given the simplicity of the method 

we decided to use this technique in the following experiments. 



15 
 

To study this phenomenon further, both astroglioma cell lines were subjected to 

the OGD/reox protocol and afterwards mitochondrial membrane potential and rates of 

ROS generation were measured by fluorescence microscopy. In basal conditions the 

TMRE fluorescence was 2-fold greater in APPswe/PS1A246E than in control cells (Fig. 

1E), indicating an increased mitochondrial membrane potential; while the rate of ROS 

generation was increased by almost 3-fold (Fig. 1F). After OGD/reox, control or 

APPswe/PS1A246E did not show a significant increase in TMRE fluorescence when 

compared to their respective basal conditions (Fig. 1E). However, the production of free 

radicals after OGD/reox was potentiated in the APPswe/PS1A246E astroglioma cell 

line by 3-fold when compared to control cells after OGD/reox, demonstrating 

significant positive interaction between the presence of the mutation and ROS 

production (Fig. 1F). Of note, we assessed whether TMRE was working in non-

quenching mode by adding carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

(FCCP) and oligomycin to the cultures (data not shown). In the analysis of TMRE 

fluorescence after OGD/reox (Fig. 1E), the two-way ANOVA revealed a significant 

effect of treatment [F1,24 = 5.242, P <0.05], a significant effect of genotype 

[F1,24 = 15.96, P < 0.001] and no treatment × genotype interaction [F1,24 = 0.332, 

P > 0.05]. In the analysis % DCF/Hoechst fluorescence after OGD/reox (Fig. 1F), the 

two-way ANOVA revealed a significant effect of treatment [F1,27 = 30.46, P <0.001], a 

significant effect of genotype [F1,27 = 28.24, P < 0.001] and a significant 

treatment × genotype interaction [F1,27 = 5.546, P < 0.05]. 

2. Ca2+-dependent cell death in the APPswe/PS1A246E astroglioma cell line 

Ca2+ plays a major role both in the pathophysiology of and cell death associated 

with AD and stroke. It is also a second messenger that allows astroglial cells to 

communicate through the astrocytic network by propagating Ca2+ waves (Sheppard et 
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al. 1997). We therefore explored the role of Ca2+ in the vulnerability to ischemia of the 

cells expressing APPswe/PS1A246E mutations. We performed the OGD/reox 

experiments increasing the concentration of extracellular Ca2+ from 0.414 mM (the Ca2+ 

concentration in RMPI media) to 5 mM (Fig. 2A). As previously observed (Fig. 1D), 

the vulnerability of APPswe/PS1A246E cells to OGD/reox was greater than that of 

control cells. Furthermore, this vulnerability was dependent on the extracellular 

concentration of Ca2+ (Fig. 2B): increasing extracellular Ca2+ concentration was to 5 

mM, significantly decreased cell viability by 18% in the APPswe/PS1A246E cells 

compared to the 0.414 mM Ca2+ + OGD/reox group, while it had no significant impact 

on viability of control cells. Moreover, the difference in cell viability at 0.4 mM Ca2+ + 

OGD/reox between control and APPswe/PS1A246E cells was 17%, whereas it 

increased to 27% at 5 mM Ca2++OGD/reox. In Fig. 2B, the two-way ANOVA revealed 

a significant effect of calcium [F2,12 = 31.38, P <0.001], a significant effect of genotype 

[F2,12 = 9.563, P < 0.05] and a significant calcium × genotype interaction [F2,12 = 5.796, 

P > 0.05]. Therefore, these results show that the increased vulnerability to OGD/reox in 

the APPswe/PS1A246E cell line reflects impaired regulation of Ca2+ homeostasis, 

demonstrated by a statistical difference in the interaction between calcium x genotype in 

the two-way anova, although other mechanisms cannot be ruled out. 

3. APPswe/PS1A246E mutation alters intracellular Ca2+ signaling 

To determine whether Ca2+ homeostasis was altered in the APPSWE/PS1A246E 

astroglioma cell line, cells were stimulated with different concentrations of ATP (1, 10, 

100 µM) and cytosolic Ca2+ levels were measured. ATP releases Ca2+ from the ER 

through activation of inositol trisphosphate (InsP3) receptors, which is the main Ca2+ 

signaling pathway in astrocytes. Cytosolic Ca2+ was measured in Fluo-4 AM loaded 

cells. 1 µM ATP generated a cytosolic Ca2+ transient in APPswe/PS1A246E cells but 
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not in control cells, indicating that APPSWE/PS1A246E mutated astroglioma cells are 

more sensitive to InsP3 receptor signaling (Fig. 3A). ATP at 10 µM and 100 µM 

increased cytosolic Ca2+ in both cell lines (Fig. 3B and 3C); nevertheless, the maximal 

[Ca2+]c peak values (Fig. 3D), the area under the curve (AUC) (Fig. 3E) and the width 

(Fig. 3F) of the intracellular Ca2+ transients were all increased in the 

APPswe/PS1A246E cells. Furthermore at the end of the measurement period (120 

seconds), the basal cytoplasmic Ca2+ levels had still not returned to baseline in the 

APPswe/PS1A246E cells. In the maximal peak analysis (Fig. 3D), the two-way 

ANOVA revealed a significant effect of ATP [F1,21 = 31.38, P <0.001], a significant 

effect of genotype [F3,21 = 27.81, P < 0.001] and a significant ATP × genotype 

interaction [F3,21 = 4.294, P < 0.05]. In the AUC analysis (Fig. 3E), the two-way 

ANOVA revealed a non-significant effect of ATP [F1,9 = 0.067, P > 0.05], a significant 

effect of genotype [F1,9 = 44.09, P < 0.0001] and no ATP × genotype interaction [F1,9 

= 0.198, P > 0.05]. In the width analysis (Fig. 3F), the two-way ANOVA revealed a 

non-significant effect of ATP [F1,9 = 0.1441, P > 0.05], a significant effect of genotype 

[F1,9 = 22.38, P < 0.01] and no ATP × genotype interaction [F1,9 = 8.570e-005, 

P > 0.05]. 

To further study the differences observed in Ca2+ homeostasis, control and 

APPswe/PS1A246E cell lines were exposed to thapsigargin to measure endoplasmic 

reticulum (ER) stored Ca2+. By blocking the sarco/endoplasmic reticulum Ca2+-ATPase 

(SERCA) pump, thapsigargin produces a [Ca2+]c signal derived from Ca2+ release 

through ER leak channels, which may be amplified by Ca2+-induced Ca2+ release 

(CICR). The kinetics of the response were strikingly faster in APPswe/PS1A246E 

astroglioma cells (Fig. 4A), although there was no significant difference in the AUC 

(t11=1.8, P=0.073, Fig. 4B): there was a 40% decrease in Tmax (U=0.0, P=0.0012, Fig. 
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4C), more than a 2-fold decrease in peak width (t11=8.8, P<0.0001, Fig. 4D) and a 2.5-

fold increase in the maximal peak (t11=11.74, P<0.0001, Fig. 4E). On the other hand, 

capacitive Ca2+ entry (CCE) was not significantly different in the two astroglioma cell 

lines in terms of maximal peak (t8=1.869, P=0.0985, Fig. 4F). However, cytoplasmic 

Ca2+ levels remained higher in astroglioma cells carrying the mutation (final steady 

state) at the end of the experiment (U=3.00, P=0.0152, Fig. 4G). In order to analyze 

whether this change in Ca2+ homeostasis is detrimental for the APPswe/PS1A246E, we 

measured cell viability after incubating the cells with the same concentration of 

thapsigargin overnight. Interestingly enough, only the APPswe/PS1A246E cells showed 

an increase in cell death (2-fold increase) after thapsigargin treatment (Fig. 4H). Taken 

together, these results would further suggest that the increased vulnerability to 

OGD/reox found in APPswe/PS1A246E astroglioma cell line seems to be related to 

Ca2+ dysregulation. In the statistical analysis of % LDH release after thapsigargin 

treatment (Fig. 3F), the two-way ANOVA revealed a non-significant effect of treatment 

[F1,20 = 8.17, P = 0.0097], a significant effect of genotype [F1,20 = 9.216, P = 0.0065] 

and no treatment × genotype interaction [F1,20 = 3.579, P > 0.05]. 

4. Mitochondrial function is impaired in APPswe/PS1A246E mutated astroglioma 

cells 

The main mechanisms regulating cytosolic Ca2+ levels are the intracellular stores 

(ER and the mitochondria), cytosolic Ca2+ binding proteins that buffer [Ca2+] and Ca2+ 

extrusion mechanisms such as the plasma membrane Ca2+ ATPase (PMCA) proteins or 

the Na+/Ca2+ exchanger (NCX). Furthermore, in AD or in response to beta amyloid, 

mitochondrial respiration is impaired, ROS generation is increased and mitochondrial 

membrane potential is altered (Abramov et al. 2004, Casley et al. 2002, Abeti et al. 

2011). As we already found that basal ROS levels and TMRE fluorescence were 
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increased in the APPswe/PS1A246E cell line, we measured different aspects of 

mitochondrial function.  

Firstly, to assess whether mitochondrial Ca2+ handling was perturbed in the 

APPswe/PS1A246E cells, we measured  [Ca2+]c and mitochondrial Ca2+ concentration 

([Ca2+]mit) levels on exposure to 10 µM ATP. Surprisingly, we did not observe 

differences in [Ca2+]mit responses between the cell lines (t6=0.9060, P=0.3998, Fig. 5A 

and B) measured by Rhod-2 fluorescence. However, [Ca2+]c levels were increased in 

the APPswe/PS1A246E mutated cells in accordance with our previous experiments 

(U=0.0, P=0.0286, Fig. 5C and 5D).  

We also measured the rate of oxygen consumption in both cell lines and found 

that the mutations were associated with a decrease in basal respiration (t6=7.104, 

P=0.0004, Fig. 5E and H) and coupled respiration (t6=5.474, P=0.0016, ATP turnover, 

Fig. 5F and H). Furthermore, ATP production in APPswe/PS1A246E cells was 

significantly reduced compared to control cells (t4=2.156, P=0.0973, Fig. 5G and H).   

Taken together, APPswe/PS1A246E cells showed mitochondrial dysfunction 

that might contribute to an increased vulnerability to OGD/reox. Moreover, taking into 

account: (i) the mitochondrial membrane hyperpolarization, (ii) the increased ROS 

production and (iii) the decreased ATP levels found in APP/swe/PS1A246E cell line, 

we hypothesize that these results could be due to impaired activity of the ATP synthase.  
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DISCUSSION 

We have found that an astrocytic cell line carrying the APPswe/PS1A246E 

mutations is more vulnerable to ischemia. They also present altered calcium signals and 

mitochondrial dysfunction that might contribute to the increased sensibility to ischemia. 

The relationship between AD and ischemia has been well documented 

previously (Gorelick 2004, Casserly & Topol 2004). Coexistence of stroke and AD 

occurs more than by chance alone and they are known to exacerbate each other (Kalaria 

et al. 1993, Pasquier et al. 1998). On the other hand, interest in the role of astrocytes in 

stroke and AD has been growing in recent years with increasing evidence that they 

contribute significantly to the progression of both diseases (Verkhratsky et al. 2010, 

Anderson et al. 2003, Swanson et al. 2004, Li et al. 2014). Thus, we aimed to find 

whether AD mutations could compromise astrocyte function in such a way that they are 

more vulnerable to ischemia and so clarify the potential role for astrocyte 

pathophysiology in the relationship between AD and stroke.  

To address this question, we chose two astroglioma cell lines, control and 

APPswe/PS1A246E, derived from WT and APPswe/PS1A246E mice, respectively. 

Interestingly, the cell line expressing both mutations associated with familial AD, 

showed higher vulnerability to the ischemia-reperfusion stimulus compared to the 

control cell line (Fig. 1C and D). This higher vulnerability to ODG/reox was 

accompanied by higher mitochondrial membrane potential and increased ROS 

production (Fig. 1E and F). In line with our results, Zhen et al. also observed increased 

cell death in hippocampal slices subjected to OGD in APPswe/PS1ΔE9 mice compared 

to wild type mice and in the CA1 region of the same mice that underwent global 

cerebral ischemia (Zhen et al. 2012). Astrocytes are relatively resistant to hypoxia 
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(Panickar & Norenberg 2005), thus it is not surprising that the control cell line was not 

affected by the OGD/reox protocol defined by MTT metabolism. However, it is worth 

noting that astrocytic cell death has also been observed in wild type astrocytes in 

models of ischemia in vivo (Li et al. 1995, Chen et al. 1997) and that the contribution of 

this cell type to excitotoxicity after ischemia has been previously documented (Rossi et 

al. 2000). The increased vulnerability of APPswe/PS1A246E astrocytes to the ischemic 

insult could be related to the higher incidence of stroke in AD patients and highlights 

the possible role of astrocytes in these pathological events. As Ca2+ plays a major role in 

cell death associated with AD and stroke (Lee et al. 1999, Weiss et al. 1994, Schneider 

et al. 2001, Begley et al. 1999, Goldberg & Choi 1993), we performed the same 

experiment but increasing the concentration of extracellular Ca2+ and observed a 

potentiation of cell death in the AD mutated cell line (Fig. 2), highlighting the role of 

Ca2+ signaling in OGD/reox vulnerability in the mutated cell line.  

Given that APP and PS1 mutations have been described to affect Ca2+ 

homeostasis in different cell models (Guo et al. 1996, Guo et al. 1997, Johnston et al. 

2006) we decided to study Ca2+ regulation in both cell lines. When ATP was used to 

trigger ER Ca2+ release mediated by InsP3, the mutated cell line responded with an 

increased cytoplasmic [Ca2+] with increased maximal peak, AUC and width (Fig. 3). 

Our results agree with studies reported by Grolla et al. (Grolla et al. 2013) in which  the 

authors reported that cytoplasmic Ca2+ levels after stimulation of neuron-glial co-

cultures with a metabotropic receptor agonist were increased in cultures treated with 

beta amyloid. Interestingly enough, the lowest concentration used in this study (1 µM 

ATP), elicited a Ca2+ signal in APPswe/PS1A246E but not in the control cell line which 

points to an increased response to this pathway. Supporting our data, Johnston et al., 

described that astrocytes transfected with a PS1 harbouring a mutation linked to familial 
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AD, showed Ca2+ oscillations at lower ATP and glutamate concentrations compared to 

astrocytes transfected with wild type PS1 (Johnston et al. 2006). To corroborate the 

alteration in Ca2+ regulation after ATP incubation, we induced the release of Ca2+ from 

the ER by blocking the SERCA pump through thapsigargin treatment. Again, we 

observed an increase in the maximal peak but this time due to a change in kinetics rather 

than to an increased overall Ca2+ release, as there were no changes in the AUC, but the 

width and the Tmax were decreased (Fig. 4). After depleting the intracellular stores of 

Ca2+, we re-added Ca2+ to the extracellular solution to activate CCE. We observed an 

increase in the final height and, interestingly, the decay of the signal in the 

APPswe/PS1A246E cell line seemed to be decreased, which may be due to a failure in 

Ca2+ extrusion to the extracellular media. Taken together, these data show that 

APPswe/PS1A246E mutations lead to increased Ca2+ concentration in the cytosol after 

stimulation. These results are of particular interest as Ca2+ signaling in astrocytes has 

been postulated to contribute to the progression of AD (Gomez-Gonzalo et al. 2017). 

Excessive Ca2+ responses are known to lead to apoptotic and necrotic cell death, which 

is demonstrated by the fact that thapsigargin induced Ca2+ cell death in 

APPswe/PS1A246E cell line but not in the control (Fig. 4H). 

Mitochondrial abnormalities in the APP/PS1 mouse model have been widely 

studied by several authors in cultured neurons (Sompol et al. 2008), brain slices 

(Dragicevic et al. 2011), or isolated brain mitochondria (Dragicevic et al. 2011), 

although the role of astrocytes on this issue has been less explored. Thus, we decided to 

study mitochondrial function in our experimental setting. We found that the astroglioma 

cells carrying the APPswe/PS1A246E mutations displayed mitochondrial membrane 

hyperpolarization and increased ROS levels (Fig. 1E and F). They also showed a 

decrease in ATP levels (Fig. 5G). The increased mitochondrial membrane potential in 
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APPswe/PS1A246E cells may support increased ROS production, as described 

elsewhere (Lee et al. 2002). Interestingly, iPSC-derived neurons with the 10+ 16 MAPT 

mutation, which induces an increase in the production of 4R tau isoforms, leads to 

mitochondrial hyperpolarization, ROS overproduction, lower ATP production and 

altered bioenergetics (Esteras et al. 2017), similar to the results described in this study. 

Altogether, these data indicate that the APPswe/PS1A246E mutations might inhibit 

ATPase synthase activity, which would increase mitochondrial membrane potential, 

increase ROS production and decrease ATP production. Several studies have found a 

decrease in the activity of the mitochondrial ATPase synthase in AD (Beck et al. 2016, 

Cha et al. 2015). Schmidt et al have identified APP as a binding partner of the alpha 

subunit of the mitochondrial ATP synthase (Schmidt et al. 2008) and Aβ interacts with 

oligomycin sensitivity conferring protein (OSCP), component of the ATPase synthase, 

leading to a loss-of-function (Beck et al. 2016). Moreover, an abnormal accumulation of 

APP has been found in the mitochondria of AD patients (Devi et al. 2006). Thus, APP 

or Aβ could be abnormally regulating mitochondrial ATPase synthase activity in the 

APPswe/PS1A246E cells by directly binding to it and decreasing its activity. 

Finally, taking into account mitochondrial dysfunction associated with AD 

mutations and their implication in Ca2+ homeostasis, we aimed to compare Ca2+ 

responses in cytosol and mitochondria in both cell lines. Interestingly enough, the Ca2+ 

transients observed in the mitochondria after ATP stimulation did not differ between 

control and APPswe/PS1A246E astrocytic cell lines. Thus, cell death may not be due to 

Ca2+ overload in the mitochondria but due to Ca2+ overload in the cytosol. Of note, it 

has been described that cytosolic Ca2+ overload leads to cell death by overactivating the 

proteolytic enzyme calpain leading to fragility and rupture of the plasma and ER 

membrane (Garcia-Dorado et al. 2012, Murphy et al. 2014). However, compromised 
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mitochondrial function through increased ROS production and a hyperpolarized 

membrane potential may also participate in this process.  

In conclusion, we have found that astrocytes carrying the APPswe/PS1A246E 

exert alterations in calcium regulation and mitochondrial function which could 

contribute to the increased vulnerability to OGD/reox. Thus, AD mutations may alter 

the normal physiology of astrocytes, to the extent that they are vulnerable to stimuli that 

are harmless in healthy conditions with the obvious impact for neuronal function and 

survival. However, these results still need further confirmation in primary cultures and 

in an in vivo model. 

CONFLICT OF INTEREST 

The authors have no conflicts of interest to declare in relation to this manuscript. 

ACKNOWLEDGEMENTS 

This work was supported by the Spanish Government (partially funded by the 

European Union ERDF/FEDER) Ref. SAF2015-63935R to M.G.L.; Ref. SAF2015-

65586 to R.M.M; Ref. PI15/00107 to A.M.R.; FPU/contract Ref. AP2009/0343 to 

A.J.M.O., the Spanish Ministry of Health (Instituto de Salud Carlos III) Ref. 

PI14/00372 to R.L and a grant from the Fundación Domingo Martínez (Spain) to 

A.M.R. and M.G.L. R.L. thanks the Instituto de Salud Carlos III and the European 

Regional Development's funds (FEDER) for a research contract under the Miguel 

Servet II Program (CPII16/00014). We also thank the Fundación Teófilo Hernando for 

its continuous support. 

  



25 
 

FIGURE LEGENDS 

Figure 1. Increased vulnerability of APPswe/PS1A246E astroglioma cells to oxygen 

and glucose deprivation/reoxygenation. (A) Experimental procedure: after 48 hours in 

culture, cells were exposed for 4 h to normoxic saline solution with glucose (Basal), or 

to oxygen and glucose deprivation (OGD) solution; thereafter, the incubation media was 

changed for RPMI media for 14 h (reox). (B) Representative images of both control and 

APPswe/PS1A246E cells, under basal or OGD/reox conditions. Quantification of cell 

viability by LDH (C) and MTT (D). Quantification of fluorescent intensity in cells 

stained with TMRE (E) and H2DCFDA (F). Data are shown as means and S.E.M. of 

n=3-8 independent experiments. Two-way ANOVA + Bonferroni post hoc. *P<0.05, 

***P<0.001 vs basal situation; #P<0.05, ##P<0.01, ###P<0.001 vs control cell line. Two-

way ANOVA + Bonferroni post hoc. Each “n” represents an independent experiment, 

corresponding to different passages of the cell lines. 

Figure 2. Cell vulnerability upon oxygen and glucose deprivation/reoxygenation is 

Ca2+-dependent in APPswe/PS1A246E cells. (A) Experimental procedure: after 48 

hours in culture, cells were exposed to normoxic saline solution with glucose (Basal) for 

4 h, or to oxygen and glucose deprivation solution (OGD) in the presence of increasing 

concentrations of extracellular Ca2+ (0.4, 5 mM); thereafter, the incubation media was 

changed for RPMI media for 14 h containing also increasing concentrations of 

extracellular Ca2+ (0.4, 5 mM). (B) Quantification of cell death after OGD/reox ± 0.4 

and 5 mM Ca2+ measured by MTT metabolism. Data are shown as means and S.E.M. of 

n=4 independent experiments. Two-way ANOVA + Bonferroni post hoc. *P<0.05, 

***P<0.001 vs basal situation; #P<0.05. Two-way ANOVA + Bonferroni post hoc. 

Each “n” represents an independent experiment, corresponding to different passages of 

the cell lines. 
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Figure 3. Cytosolic Ca2+ levels elicited by ATP are increased in APPswe/PS1A246E 

cells. Representative [Ca2+]c transients evoked by ATP 1 µM (A), 10 µM (B) and 100 

µM (C) recorded in control and APPswe/PS1A246E astroglioma cells. Quantification of 

the maximal peak (D), area under the curve (E) and width (F) in both cell lines 

stimulated with different concentrations of ATP. Data are shown as means and S.E.M 

(n=3-4 independent experiments). *P<0.05, **P<0.01, ***P<0.001 vs control. Two-

way ANOVA + Bonferroni post hoc. Each “n” represents an independent experiment, 

corresponding to different passages of the cell lines. 

Figure 4. The APPswe/PS1A246E astroglioma cell line shows higher vulnerability 

to thapsigargin. Representative curves of cytoplasmic Ca2+ levels measured by Fluo-4 

(A). Quantification of kinetic parameters of endoplasmic reticulum Ca2+ release after 

activation with thapsigargin: area under the curve (B), Tmax (C), Width (D) and peak 

(E). Quantification of capacitative Ca2+ entry (CCE) kinetic parameters peak (F) and 

final height (G). Data are shown as means and S.E.M. (4-7 experiments).  *P<0.05, 

***P<0.001 vs control. Student’s t-test. (H) APPswe/PS1A246E show increased LDH 

release after incubating the cells with 1 µM thapsigargin overnight. Data are shown as 

means and S.E.M. (n=6 experiments). **P<0.01, vs control+thapsigargin group; 

##P<0.01 vs APPswe/PS1A246E basal. Two-way ANOVA + Bonferroni post hoc. Each 

“n” represents an independent experiment, corresponding to different passages of the 

cell lines. 

Figure 5. APP/PS1 mutations lead to mitochondrial dysfunction in astroglioma 

cells. Representative curve of [Ca2+]mit levels measured by Rhod-2 (A) and [Ca2+]c 

levels measured by Fluo-4 (C) fluorescence after 10 µM ATP addition and its 

quantification (B and D). (E) Mitochondrial basal respiration, (F) ATP turnover and (G) 
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ATP levels in both control and APPswe/PS1A246E astroglioma cell lines. 

Representative graph of oxygen-consumption rate for control cells and 

APPswe/PS1A246E (H). Data are shown as means and S.E.M. of n=3-4 independent 

experiments. **P<0.01, ***P<0.001 vs control. Student’s t-test. Each “n” represents an 

independent experiment, corresponding to different passages of the cell lines. 
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