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Abstract

Background: Alternative splicing (AS) is a post-transcriptional regulatory mechanism for gene expression regulation.
Splicing decisions are affected by the combinatorial behavior of different splicing factors that bind to multiple binding
sites in exons and introns. These binding sites are called splicing regulatory elements (SREs). Here we develop CoSREM
(Combinatorial SRE Miner), a graph mining algorithm to discover combinatorial SREs in human exons. Our model does
not assume a fixed length of SREs and incorporates experimental evidence as well to increase accuracy. CoSREM is
able to identify sets of SREs and is not limited to SRE pairs as are current approaches.

Results: We identified 37 SRE sets that include both enhancer and silencer elements. We show that our results
intersect with previous results, including some that are experimental. We also show that the SRE set GGGAGG and
GAGGAC identified by CoSREM may play a role in exon skipping events in several tumor samples. We applied CoSREM
to RNA-Seq data for multiple tissues to identify combinatorial SREs which may be responsible for exon inclusion or
exclusion across tissues.

Conclusion: The new algorithm can identify different combinations of splicing enhancers and silencers without
assuming a predefined size or limiting the algorithm to find only pairs of SREs. Our approach opens new directions to
study SREs and the roles that AS may play in diseases and tissue specificity.
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Background
Alternative splicing (AS) is the primary explanation for
the difference between the estimated 24,000 protein-
coding genes in the human genome and the estimated
100,000 different proteins that are synthesized [1, 2]. AS
is a post-transcriptional mechanism for regulating gene
expression and generating proteomic diversity [3, 4]. In
AS, genes generate different mRNA isoforms from the
same primary transcript [5, 6]. Recent studies show that
AS occurs in more than 95 % of human genes [4, 6, 7].
The RNA splicing process depends on recognition, by

the spliceosome, of specific sequence elements in pre-
mRNAs called core splicing signals. These include the
5’ splice site, the 3’ splice site, and the branch point
sequence [8].
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AS is regulated by specific proteins, called splicing fac-
tors. There are 71 known human splicing factors [9, 10].
Splicing factors, such as SR proteins and hnRNPs, bind
to certain short subsequences on the pre-mRNA, called
splicing regulatory elements (SREs). Identifying these
SREs and their combinatorial effects are crucial to under-
standing AS. Exonic SREs are classified as exonic splicing
enhancers (ESEs) if they promote exon inclusion and as
exonic splicing silencers (ESSs) if they inhibit exon inclu-
sion [4, 5, 11]. Accurate splicing is crucial, as it is believed
that mutations either in the core splicing signals or in the
SREs contribute to approximately 50 % of human genetic
diseases [1, 6, 12].
There have been several large-scale studies of AS.

Several techniques were utilized to identify SREs, such as
systematic evolution of ligands by exponential enrichment
(SELEX) [13], UV crosslinking and immunoprecipitation
(CLIP) [14], and minigene-based systems [15].
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Beside experimental approaches, various computational
approaches were developed to identify SREs. The word
count enrichment approach is one widely used technique
[4, 16–18]. Another approach utilizes machine learning
methods such as support vector machine classifiers [19],
while regression based methods were utilized as well [2].
We [20] developed a de Bruijn graph based model to
identify SREs of varying lengths.
Most of these approaches have focused on individual

motifs [21]. However, many AS events involve multiple
regulators. Zhang et al. [22] showed experimentally that
knocking out (mutating) from two to four ESEs affects
splicing efficiency dramatically. Hence, AS is a complex
process that involves cooperative or competitive interplay
between splicing enhancers and silencers. Most tissue-
specific AS events studied so far seem to be regulated by a
more complex group of regulators [8, 11].
For example, if an exon has both ESE and ESS elements

in proximity and in case of having an SR splicing factor
with great affinity (SR factors are proteins that bind to
enhancers and play various roles in spliceosome assembly
[8]), the SR protein will bind to the ESE and stimulate exon
inclusion. This is through recruiting other spliceosome
proteins, such as U1 and U2, to the core splicing signals.
Consequently, the spliceosome machinery is assembled,
and the exon is included.
On the other hand, if an inhibitory splicing factor such

as hnRNP, which acts as a splicing repressor, is also
present, it may inhibit the exon inclusion by binding
to the silencer sequence and recruiting the binding of
other inhibitory factors. These factors extend to the exon
boundary and prohibit the binding of the SR protein. As a
result, the exon will be skipped [8, 23].
In general, identifying individual cis-regulatory ele-

ments does not suffice to explain tissue-specific or
condition-specific AS. The challenge is that, because of
the large number of possible SRE pairs that reside in dif-
ferent regions, experimental approaches for identifying
SRE pairs will be prohibitively expensive [24]. Identify-
ing larger SRE combinations, where multiple SREs are
working together, will be even harder.
Recent methods have studied combinatorial SREs in

AS regulation [24, 25], but some of them did not exploit
transcript expression data and focused only on frequently
co-occurring SREs. All the methods concentrated on SRE
pairs only [24–27].
Ke et al. [25] utilized a hyper-geometric test to dis-

cover sequence pairs that are over-represented in intronic
regions flanking human exons. They identified more
than 60,000 5-mer sequence pairs with a p-value ≤
10−4. Friedman et al. [26] employed a similar approach
except they utilized a Poisson approximation instead
of a hyper-geometric test. They identified SRE pairs at
the two ends of introns in both human and mouse.

Wen et al. [24] developed a regression model based on
biophysical principals for the regulation of AS. It cap-
tures both the main effects of individual SREs and the
combinatorial effects of SRE pairs. The authors model the
spliceosome assembling process with a simplified chem-
ical reaction. The authors identified 196 6-mer sequence
pairs from different tissues. Their model was limited to
the interaction of at most two SREs.
We have developed CoSREM (Combinatorial SRE

Miner), an algorithm for discovering combinatorial SREs.
CoSREM is a two-level graph mining algorithm that we
apply to our SRE graphs [20] to identify co-occurring
sets of SREs. Our focus is on identifying sets of
exonic splicing regulatory elements whether they are
enhancers or silencers. Experimental evidence is incor-
porated through the SRE graphs to increase the accu-
racy of the results. The identified SREs do not have a
predefined length, and the algorithm is not limited to
identifying only SRE pairs as are current approaches.
CoSREM is implemented as an open-source package
(https://github.com/emanmostafabadr/CoSREM).

Methods
Preliminaries
Weuse terminology from formal language theory [28]. Let
� be an alphabet, a finite set of symbols such as the DNA
alphabet {A,C,G,T}. As defined in [20], for k ≥ 1, the
k-dimensional de Bruijn graph G = (V ,E) over � is a
directed graph with vertex setV = �k , all length-k strings
over �, and edge set

E = {(σw,wτ) | w ∈ �k−1, σ , τ ∈ �}.
In other words, an ordered pair of length-k strings (u, v) is
in E if the length-(k−1) suffix of u equals the length-(k−1)
prefix of v [29].
For example, the 2-dimensional de Bruijn graph over

the DNA alphabet � = {A,C,G,T} has vertex set
V = {AA,AC,AG,AT ,CA,CC,CG,CT ,GA,GC,GG,GT ,
TA,TC,TG,TT}. See Fig. 1.
Let G = (V ,E) be any de Bruijn graph, and let U ⊆ V .

The SRE graph GU = (U ,E′) for G and U is the vertex-
induced subgraph of G with edge set

E′ = {(u, v) ∈ E | u, v ∈ U}.
Let GUESE be an SRE graph where the chosen vertex set
UESE has experimental evidence of enhancing activity.
In analogy to GUESE , let GUESS be an SRE graph where
the chosen vertex set UESS has experimental evidence of
silencing activity. The SRE graph only includes 6-mers
with the strongest experimental evidence among all the
available 6-mers. It is the basic graph needed to extract
SREs of different lengths and SRE sets as well.
Let Y be a set of n k-mers of interest Y = {y1, y2, . . . , yn}.

For example, it can contain only 6-mers with evidence
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Fig. 1 The 2-dimensional de Bruijn graph over the DNA alphabet
{A, C,G, T}

of enhancing activity, in other words, 6-mers that corre-
spond to the vertices in the GUESE graph.
Let X be a set of m exons X = {x1, x2, . . . , xm}. The SRE

profile matrix P = (pi,j) is the n × m occurrence matrix,
where pi,j = 1, if k-mer yi is in exon xj, and pi,j = 0, if
k-mer yi is not in exon xj. Let PESE and PESS be two SRE
profile matrices for enhancers and silencers, respectively.
For a k-mer yi, T(yi) is the set of exons containing yi,

that is, T(yi) = {xj | pi,j = 1}.
Let Y ′ ⊆ Y be a set of k-mers. The set of shared exons

for Y ′ is T(Y ′) = ⋂
yi∈Y ′ T(yi), the set of all common

exons where the Y ′ k-mers reside together.
Let GS = (S,ES) be an induced connected subgraph of

the SRE graph GU . GS is α-cohesive if |T(S)| ≥ α, where
α ≥ 1. GS is a maximal α-cohesive subgraph (MCS) if
none of its supergraphs is α-cohesive. MCSs serve as the
potential regulatory elements. They give us the ability to
produce variable length SREs.
Let M = {GS1 ,GS2 , ...,GSr } be a set of MCSs, where its

shared exon set is T(M) = ⋂
GSi∈M T(Si). M is called

an MCS collection if it satisfies the following conditions:
|M| ≥ β and |T(M)| ≥ θ , where β and θ are user defined
thresholds. An MCS collection is a set of SREs (enhancers
or silences) that reside in the same set of exons.

Problem definition
Let C = {M1,M2, ...,Ml} be a set of all the MCS col-
lections that can be identified given the two SRE graphs
GUESE and GUESS , SRE profile matrices PESE and PESS, and
the parameters α, β , and θ . The problem of discovering
combinatorial SREs is to find the set C such that |M| ≥ β ,
|T(M)| ≥ θ for any M ∈ C, and |T(S)| ≥ α for any
GS ∈ M. Specifically, the goal is to discover all SRE sets
whose SREs co-occur in the same exons.

Data sets
We utilize LEIsc (Log of the Enrichment Index, scaled)
scores from [30]. The authors used a minigene approach
to place all 4096 6-mers at five different sites in two model
exons, which were then sequenced using an Illumina
Genome Analyzer. They then transfected their library of
minigenes into human embryonic kidney cells (HEK293)
and, after 24 hours, isolated the mRNA molecules that
included the central exon, converted these to cDNA, and
sequenced the resulting DNA. An enrichment index was
calculated based on the output proportion with respect
to the input proportion. The enrichment index score rep-
resents the splicing efficiency of the central exon, with
higher values representing greater exon inclusion. Using a
t-test to compare each LEIsc value of a specific 6-mer with
the average of the LEIsc values of molecules that do not
contain this 6-mer, Ke et al. [30] identified 1182 potential
ESEs and 1090 potential ESSs.
We also utilized all unique coding exons for known

human genes available from the ENCODE project [31].
It includes 205,163 exons from 29,179 genes. Data was
acquired from the RefSeq Genes track. The December,
2013, human genome assembly (GRCh38/hg38) was used.
For comparing our results with previously published

results, several databases are utilized. SpliceAid-F [9] is a
recent comprehensive database that includes all the exper-
imentally verified splicing factors and their binding sites.
It contains 71 splicing factors and 655 binding sites for
human. We also used AEdb [32], which is a database for
alternative exons and their properties. It is the manually
curated component of the Alternative Splicing Database
(ASD). The exon data in AEdb have been experimentally
verified. We also utilized PESE and PESS data sets from
[33] which contains 2096, and 1091 8-mers as enhancer
and silencer elements, respectively.

Overview of the computational method
A de Bruijn graph based model is developed, and a
two-level graph mining algorithm is applied to discover
enhancers and silencers that occur in the same set of
exons. Experimental evidence that a specific k-mer has
enhancing or silencing behavior is incorporated through
the graph model. Our hypothesis is that combinatorial
SREs can be discovered by their co-occurrence behavior
in the same set of exons and the experimental evidence of
their enhancing or silencing activities.
Utilizing a de Bruijn graph allows us to detect poten-

tial SREs of different lengths based on the experimental
data from Ke et al. [30]. For example, if there are two
6-mers that overlap in five nucleotides and both of them
have high LEIsc values, there is a greater probability that
they form a potential 7-mer SRE. Suppose that the two
6-mers GTCATC and TCATCC have high LEIsc scores.
Consequently, there is a good chance of having one 7-mer
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SRE with the sequence GTCATCC. The same applies with
m consecutive 6-mers in the de Bruijn graph; if they all
have high LEIsc values, then they can form one potential
(m + 5)-mer SRE [20].
Our model starts with constructing the 6-dimensional

de Bruijn graph G = (V ,E) over the DNA alphabet
� = {A,C,G,T} and associates each vertex with its
rank based on LEIsc scores from Ke et al. [30]. The next
step is building the SRE graphs. For example, if we are
looking for ESEs, we select a subset UESE ⊂ V that
is associated with the highest LEIsc values. In the same
manner, we select UESS to be the 6-mers with the lowest
LEIsc values. As a result, we construct two SRE graphs,
GUESE for enhancers and GUESS for silencers. The next
step is constructing the SRE profile matrices, where
we build profile matrices PESE and PESS for enhancers
and silencers respectively. We apply the first level of the
CoSREM algorithm (GenMCS) for discovering maximal
α-cohesive subgraphs (MCSs). Our goal in this level is
to discover potential enhancer and silencer elements of
different lengths where each element resides in a spe-
cific set of exons. With inputs GUESE and PESE , GenMCS
generates several subgraphs, where each one represents a
set of ESEs that resides in at least α exons. In addition,
GenMCS is also applied with inputs GUESS and PESS to
discover potential silencers as well. Combining the output
from the two runs of GenMCS, we then apply the second
level of CoSREM for identifying MCS collections. MCS
collections are sets of cohesive subgraphs, whether they
represent enhancers or silencers, that occur in at least θ

exons. The output is sets of potential regulatory elements
that are grouped together. The final step is filtering the
resultedMCS collections. Each subgraph in anMCS col-
lection is mapped to the actual sequence in the associated
exons. The resulting sequences are checked for overlap-
ping. In case of overlapped sequences, they are replaced
by one longer k-mer, which is evaluated to be included or
eliminated in the final output.

Building the SRE graphs
The 6-dimensional de Bruijn graph G = (V ,E) over the
DNA alphabet � = {A,C,G,T} is constructed. The G
graph has 4096 vertices and 16,384 edges. As mentioned
earlier, we utilize the LEIsc scores (calculated in [30])
of potential exonic enhancers and silencers. If a specific
6-mer was found to be an enhancer or silencer, we use its
associated LEIsc score. If it is defined as neutral, we con-
sider its LEIsc value to be zero. We order all the scores
in descending order and associate each vertex v in the G
graph with its rank. The rank suggests the strength of the
effect of a specific 6-mer on splicing. Hence, the higher
the rank, the greater the evidence of the enhancing activ-
ity for that specific 6-mer, and the lower the rank, the
greater the evidence of the silencing activity. Let R be a

predefined number of ranks. A set UESE is constructed
by choosing the top R vertices by rank to create the SRE
graph GUESE = (UESE ,E′), and the lowest R vertices by
rank to create the SRE graph GUESS = (UESS,E′′) as well.

Constructing the SRE profile matrices
Two SRE profile matrices (PESE and PESS) are then con-
structed based on the vertices in the SRE graphs GUESE
and GUESS respectively. Utilizing the human coding exon
database, we set pi,j equal to 1 or 0, according to the pres-
ence or absence of 6-mer yi in exon xj. We limit the search
for 6-mers in the exons to the first 50 nucleotides as we
showed that extending the exonic flanking length does not
affect the results significantly [20].

Discovering maximal α-cohesive subgraphs (MCSs)
Given an SRE graph GU and an SRE profile matrix P, the
algorithmGenMCS from [34] is modified to find maximal
α-cohesive subgraphs.
GenMCS takes as an input, in case of ESEs, the SRE

graph (GUESE ), the SRE profile matrix (PESE), and the user-
defined threshold α. It starts by pruning all vertices that do
not satisfy the threshold requirement. Then, starting from
each vertex as an initial subgraph G, GenMCS extends
the subgraphs in a depth first search manner. Each initial
subgraph G will be extended with its neighboring ver-
tices. GenMCS checks if the extended subgraph G′ with
one neighbor vertex will generate an α-cohesive subgraph
(i.e a subgraph with its vertices sharing at least α exons,
where T(G′) ≥ α). If this is the case, GenMCS will pro-
ceed in a depth-first fashion to extend G′. If subgraph
G cannot be extended without violating the α threshold,
then G is a maximally α-cohesive subgraph. Two pruning
strategies are applied in the original algorithm to reduce
the search space: if the extended subgraph has been seen
before or if it is subsumed by any of the other discov-
ered cohesive subgraphs. We modified GenMCS not to
apply the second pruning strategy as, due to the nature of
our data, it is allowed to have overlapping subgraphs with
common vertices as long as the common exons are not
the same. These overlapped subgraphs represent different
SREs with some common nucleotides.
Figure 2 illustrates an example of the algorithm in case

of ESEs. The output is a table called MCStable. It con-
sists of maximal cohesive subgraphs and each subgraph is
associated with a set of exons where the splicing enhancer,
which this subgraph represents, resides. We apply Gen-
MCS utilizing GUESS and PESS as inputs to get potential
silencers as well.

Identifying MCS collections
The output from the first level of CoSREM is all the
maximal α-cohesive subgraphs (MCSs), whether they rep-
resent enhancers or silencers, with their associated exons.
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Fig. 2 An example of mining cohesive subgraphs. The graph at the top left corner represents the SRE graph GUESE . We choose R = 30 which means
the SRE graph contains the top 30 6-mers in rank. The matrix on the right is the SRE profile matrix PESE . Setting α = 1000 means that the connected
vertices should co-occur in at least 1000 exons to be considered a cohesive subgraph. The tree in the middle shows how GenMCS proceeds. The
bold boxes represent cohesive subgraphs. The dotted boxes represent subgraphs that are not cohesive and the remaining branch will be pruned.
The output is 9 subgraphs as illustrated in the bottom graph
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The next step is to find collections of these already
discovered subgraphs that share at least θ exons. To find
such MCS collections, anMCStree is built.
The MCStree is a modified set enumeration tree, where

each vertex contains an MCS collection M and its associ-
ated exons T(M). The root of theMCStree is a vertex with
M = ∅ and T(M) containing all the exons.
The algorithm, given in Fig. 3, uses a depth first search

approach to build theMCStree.
It takes the MCStable as an input. MCStable is a hash

table where the MCS IDs are the keys and the exon set of
each MCS is the value. Each vertex at the first level of the
tree represents one of the already calculated MCSs as an
initial M. Therefore, the exon set T(M) is the exon set of
the corresponding MCS (line 6). A child vertex u of vertex
v is generated by extending Mv with one of the remain-
ing MCSs and T(Mu) is then calculated as depicted in
Fig. 4. As we build the MCStree as an ordered tree, Mv is
extended by adding an MCS whose ID is only bigger than
the largest MCS ID in the collection. Different pruning
strategies are applied to reduce the search time and space.
However, they do not affect the accuracy of the produced
results, as we prune only the branches that do not sat-
isfy the user constraint. This follows from utilizing the
set enumeration tree structure, where all set combinations
are generated and tree branches are only pruned if con-
straints are violated. For example, one pruning strategy
is that we extend the tree branches in a depth-first man-
ner as long as the generated M in the current vertex has
shared exons with size |T(M)| ≥ θ . Once this constraint
is violated, this branch is pruned (see Fig. 4). This is anal-
ogous to the subset-infrequency pruning strategy utilized
inMax-Miner algorithm [35]. Another strategy is to prune
the branch if the generatedM has been generated in a pre-
vious part of the tree with the same exon set. However, if

the generatedM is a subset of a previously generatedMCS
collection but with a different exon set, the newMwill still
be included. Figure 5 illustrates an example of anMCStree.
After building theMCStree, a breadth-first search (BFS)

is applied to identify the path from the root to each ver-
tex in the tree. Only vertices with distance ≥ β from the
root are included in the results. Each vertex represents an
MCS collection and its distance from the root represents
the number of MCSs in that collection (Fig. 5).

Filtering the MCS collections
The output of CoSREM is all MCS collections, which
represent sets of potential enhancers and silencers that
co-occur in specific sets of exons. The goal of the filter-
ing step is to generate the corresponding sequences for
each MCS collection. As we allowed overlapping between
sequences in the first level of CoSREM, there is a pos-
sibility to have multiple regulatory elements that form a
co-occurring MCS collection but they are actually over-
lapping sequences in the exons. As a result, they can be
considered as one longer k-mer instead. Therefore, we
replace the overlapping SREs of the same type (ESEs or
ESSs) with one longer SRE. That may result in an MCS
collection with only one long SRE, or still multiple SREs
if not all of them are overlapping. In the former case,
this MCS collection will be eliminated from the results.
On the other hand, if the set contains both enhancers
and silencers, we allow overlapping between sequences as
that is in accordance with the complex interplay between
enhancers and silencers [8].
Therefore, for each MCS collection M, the correspond-

ing sequences of each subgraph are generated. This is
performed by applying a depth first traversal as in [20].We
eliminate the generated sequences that are subsumed by
other sequences. Then, we check the first 50 nucelotides

Fig. 3 BuildMCStree algorithm: Build theMCStree
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Fig. 4ModDFS: An algorithm to recursively extend the MCS collections

of each exon in the corresponding exon set T(M) to locate
these sequences in the exon and generate a new SRE set
if some of them are overlapping. For example, one of
our MCS collections contains these four ESEs: CCCGGA,
CCGGAG, CGGAGC, and GGAGCC. These sequences

are found to overlap in some of the exons in the associ-
ated exon set, forming one 9-mer element CCCGGAGCC.
In this case, we consider it only one ESE, and we do not
include it in the final results. Another case was that only
the first three ESEs overlap, forming an 8-mer sequence

Fig. 5 An example of anMCStree. The example shows a part of the tree where θ = 100. The dotted boxes means that this MCS set does not satisfy
the user threshold T(M) ≥ θ , where T(M) is the number of shared exons between the MCSs, and this branch will be pruned. all vertices with
distance from the root ≥ β threshold will be considered as potential MCS collection
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CCCGGAGC. This results in a new SRE set with two
ESEs (CCCGGAGC, GGAGCC). It will be included in
the final result if the number of exons, that this SRE set
resides in, exceeds the original threshold for generating
the MCS collection (θ ≥ 100). Several other SRE sets
are generated as well, based on the exons we are investi-
gating such as (CCCGGAG, CGGAGCC), and (CCCGGA,
CCGGAGCC). As a result, multiple SRE sets can be gener-
ated from oneMCS collection, if they exceed the specified
threshold. Figure 6 illustrates an example of the filtering
process.

Results
Combinatorial SREs discovered in human exons
For predicting combinatorial SREs, we chose the highest
and the lowest 400 6-mers by LEIsc values to construct
the SRE graphs GUESE and GUESS . These values were cho-
sen since most of the analysis done by Ke et al. [30] on
their produced LEIsc scores, which we utilize, was on the
highest or the lowest 400 LEIsc scores. However, any num-
ber can be chosen based on the utilized data.We chose the
user defined constraints α, θ , and β to be 1000, 100, and 2,
respectively. Different values for α and θ have been tried
as we will illustrate in the Discussion section. We chose β

to be 2 to discover at least pairs of SREs.
GenMCS (the first level of CoSREM) produced 264

potential exonic regulatory elements as illustrated in
Additional file 1: Table S1. That includes 175 enhancers
and 89 silencers. Building the MCStree (the second level
of CoSREM) generated 745 MCS collections as depicted
in Additional file 1: Table S2. Filtering the results and
generating the corresponding sequences, we generated 37

combinatorial SRE sets. That includes 30 sets of both
enhancers and silencers and seven sets of co-occurring
enhancers. The resulting regulatory elements lengths are
between 6-mers and 7-mers. The results are shown in
Tables 1 and 2 where we also utilized SpliceAid-F [9] and
the ESEfinder tool [36] to evaluate the resulting regulatory
elements and whether they bind to known splicing factors.
Since our SREs are of variable length, as are SpliceAid-F

binding sites, we checked if our elements is totally con-
tained in at least one binding-site in the database or vice
versa. Hence, we retrieved the associated splicing factor.
It should be noticed that although 37 combinatorial SRE

sets were generated, the actual number of enhancer and
silencer elements appeared in these sets are 25 and 14,
respectively, with total number of 39 SREs. This supports
the known complex relationship between enhancer and
silencer elements and that alternative splicing is a complex
process that involves cooperative or competitive interplay
between both types. Our combinatorial SREs can be the
basis to identify context-dependent regulation where the
regulatory element behavior does not only depend on its
sequence but also on its neighboring sequences [11].
Figure 7 illustrates the the relationship between

enhancer and silencer elements in our combinato-
rial SRE sets. It indicates the many-to-many rela-
tionship where, one enhancer element can co-occur
with multiple silencers and vice versa. This many-
to-many relationship does not only include regula-
tory elements of different types, it can also contains
regulatory elements of the same type. For example
the enhancer element AGAGGA co-occur with other
enhancers (CAAGAA,GATGGA,TGAGGA,GAGGAC).

Fig. 6 An example of generating SRE sets. The MCS collection here contains three subgraphs representing enhancers. Applying a modified depth
first traversal will result in the longest sequence from each subgraph. The last step is to locate the three sequences in the associated exon set. If any
of the sequences are overlapping in an exon, they will be merged in one longer sequence which results in new SRE sets. We then count the number
of exons each new SRE set resides in. The SRE set that resides in at least 100 exons will be included in the final result as the set highlighted with a red
rectangle
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Table 1 Combinatorial enhancers and silencers generated by
CoSREM. The number of exons each set resides in, and the
splicing factors that they may bind to according to SpliceAid-F [9]
and ESEfinder tool [36]

Combinatorial SREs Number of exons Splicing factors

CGGGAG,GGGAGG 526 hnRNP A1

GAAGGC,AGGCAG 373 9G8,SC35,SF2/ASF

GCTGTC,TGTCAG 254 -

GAGGAC,GGGAGG 233 SF2/ASF*, hnRNP A1

CCGGGA,GGGAGG 229 hnRNP A1

AGAGAC,TAGAGA 218 -

GGAGTC,AGTCAG 217 -

GAAGTC,AGTCAG 213 -

TGAGGA,GGTGAG 200 SF2/ASF

CCGGGAG,GGGAGG 199 hnRNP A1

GCGGGA,GGGAGG 190 hnRNP A1

GATGTC,TGTCAG 171 -

GCGGGAG,GGGAGG 169 hnRNP A1

AGAGGA,AGGCAG 156 FMRP

GCAAGA,GTGCAA 154 -

GTGAAGA,AGGTGA 153 SF2/ASF

GAGGAT,GGGAGG 147 SF2/ASF**,hnRNP A1

AGAGGA,CAGCCA 133 FMRP ,hnRNP L

TGAGGA,AGGCAG 129 -

GATGCC,TGCCTA 127 SRp55*

GGAGCC,AGGTGG 114 -

GGAGCC,CCCACC 114 -

TGGACC,AGGTGG 112 -

TTCAAC,CTTTCA 112 SRp40*,hnRNP E1

TTCATC,CTTTCA 110 YB-1,SRp55*,hnRNP E1

GAACAA,AGGTGA 106 -

CAAGGA,CAGCCA 103 FMRP,hnRNP L

TGAGGA,AGGTGG 103 -

TGAGGA,AGGTGA 102 -

CAAGGA,TCCCAA 100 SRp40,FMRP

*identifies splicing factors identified by ESE finde
**means the splicing factors is identified by both methods

Comparison with other data sets
Among the 39 SREs in our combinatorial SRE sets, 35
were included in our previous results [20]. We also com-
pared our results with previously published databases.
We utilized exonic binding sites from SpliceAid-F [9].
SpliceAid-F contains 330 different sequences for human,
112 are exonic binding sites. We removed sites that bind
to members of the extended family of heterogeneous
nuclear ribonucleoproteins (hnRNPs) and other splicing

Table 2 Combinatorial enhancers generated by CoSREM. the
number of exons each set resides in, and the splicing factors that
they may bind to

Combinatorial SREs Number of exons Splicing factors

AGAGGA,TGAGGA 185 FMRP

GAAGGC,TGAGGA 113 9G8,SC35,SF2/ASF

CAAGGA,TGAGGA 105 -

AGAGGA,GATGGA 104 FMRP

AGAGGA,CAAGGA 103 FMRP

AGAGGA,GAGGAC 101 FMRP

GGAGCC,TGAGGA 100 -

factors that are considered silencers according to the lit-
erature. The remaining 59 sequences are considered as
exonic enhancers, as they bind to splicing factors that are
involved in enhancing activities. As stated earlier, since
our predicted SRE list are of variable length, as well as
SpliceAid-F binding sites, the overlap between the two
sets are calculated by finding whether each sequence in
the first list is totally contained in the second list or
vice versa. Another database is AEdb [32]. It contains
294 splicing regulatory motifs. We only utilized human
enhancers (64 sequences) and silencers (24 sequences).
We utilized PESE and PESS data sets as well [33]. Table 3
summarizes the overlapping results. Overall, 88 % of the
enhancers and 64 % of the silencers we identified in our
combinatorial SRE sets can be mapped to previous data
sets.
We also compared our results with results from [30].

Those authors identified 232 and 262 6-mers that could
have potential positive or negative synergy with other
6-mers. The authors did not identify an actual set of
combinatorial 6-mers. From our 37 combinatorial SREs,
20 sets had at least one 6-mers from their list [30].
Most of the current approaches are applied on intronic
regions [21, 24–27]. Therefore, we were not able to utilize
their results for verification.
We also wanted to verify whether the SRE groups we

found are significant. To address this issue, we randomly
generated the same number of exons that we have in
our database. Sequences of length 50 nucleotides that
only include the letters A, C, G, and T were randomly
produced. Then, we applied CoSREM with the same
threshold values (α = 1000, θ = 100, and β = 2).
Although the number of generated MCS collections were
considerably larger in the random case (4853), the filter-
ing stage did not yield any results, as the generated groups
did not pass the threshold θ = 100. In other words, in
the artificial data, the discovered SREs did not co-occur,
although the specified threshold is relatively small. That
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Fig. 7 The regulatory network for enhancers and silencers. The red nodes represent enhancer elements, and the blue ones represent silencer
elements. The network illustrates the many-to-many relationship between the enhancers and silencers

means CoSREM is capable of distinguishing significant
SREs that do not co-occur due to randomness in the data.

SRE set (GAGGAC,GGGAGG) and the role it may play in
cancer progression
We further investigated some of the combinatorial SREs.
We chose the SRE set (GAGGAC, GGGAGG) as it is
one of the highest ranked sets, according to the num-
ber of exons it resides in, and they are potential binding
sites to both types of splicing factors (SR proteins and
hnRNP proteins) as illustrated in Table 1. For example,
when we checked the exons that the SRE set (GAG-
GAC,GGGAGG) resides in, the two SREs were overlapped
in most of the sequences, constituting the sequence
GGGAGGACA. We utilized the Human Splicing Finder
tool [37] to validate whether the sequence contains both
an enhancer and a silencer as we predicted. Human Splic-
ing Finder is a tool to identify splicing motifs utilizing

Table 3 Number of overlapped enhancers and silencers from
our combinatorial SRE sets with previously published data sets.
The numbers between brackets are the number of enhancer and
silencer elements in our SRE sets

SpliceAid-F AEdb PESE PESS

Enhancers (25) 8 7 19 -

Silencers (14) 4 3 - 4

all the already known SRE experimentally and computa-
tionally. It also provides the splicing factors the sequence
binds to if they are known. Utilizing Human Splicing
Finder, the sequence GGGAGGACA is found to have
the ESE motif GGGAGGA, among other motifs, where
the splicing factor SF2/ASF binds. It also contains the
ESS motif GAGGAC that binds to the splicing factor
hnRNP A1.
This is one of the known classical examples of the

combinatorial effect of having both an ESE and an ESS
in adjacent positions. There are several studies that
report the antagonistic behavior between the SF2/ASF
and hnRNP A1 splicing factors [8, 23]. For example,
in exon 3 of the HIV1 tat gene, the hnRNP A1 splic-
ing factor may bind to an ESS and inhibit splicing by
propagating hnRNP A1 molecules further towards the
3’ splicing site. That propagation behavior can be inhib-
ited by the SF2/ASF splicing factor when it binds to an
ESE that resides upstream of the ESS, as in our sequence
[8, 23, 38–40]. Furthermore, Mayeda et al. [41] showed
in vitro that having different ratios of SF2/ASF to hnRNP
A1 promotes exon skipping or inclusion by binding to
different ESEs or ESSs. Therefore, that could provide us
with an understanding of what might be the possible
outcomes of combinatorial splicing regulation (Fig. 8).
We further investigated the exons in the genes that have

this SRE set and identified by CoSREM utilizing TCGA



Badr and Heath BMC Bioinformatics  (2015) 16:285 Page 11 of 15

Fig. 8 Possible combinatorial effect of the overlapped SREs (GGGAGGA,GAGGAC). One possible scenario is having SF2/ASF splicing factor with great
affinity. It binds to the ESE and stimulate exon inclusion. Another possibility is if the splicing repressor hnRNP A1 exists, it may inhibit the exon
inclusion by binding to the silencer sequence and recruit the binding of other inhibitory factors which extend to the exon boundary and prohibit
the binding of the SF2/ASF protein. As a result, the exon will be skipped. The rectangles in this figure represent exons and lines represent introns

Spliceseq [42]. TCGA is an AS database that utilizes RNA-
Seq samples from The Cancer Genome Atlas project to
provide the splicing patterns differences between different
tumor samples and between tumor and normal samples.
Several of these exons were found to be included in sev-
eral samples of different cancer types and skipped in the
normal samples. For example, exon 17 in the PRKCG gene
is included in 100 % of all the transcripts of the sam-
ples for lung squamous cell carcinoma (LUSC), kidney
renal clear cell carcinoma (KIRC), liver hepatocellular car-
cinoma (LIHC), prostate adenocarcinoma (PRAD), and
kidney chromophobe (KICH), while skipped in 100 % of
all the transcripts of the normal samples, as shown in
Fig. 9. The inclusion or exclusion of these exons may be

related to the antagonistic behavior of their positive and
negative regulators that we identify. PRKCG is known to
be a major receptor for phorbol esters, a class of tumor
promoters. As abnormal splicing events are a major con-
tributor to cancer development [43], understanding the
reasons behind specific exon inclusion or exclusion can
play a role in understanding cancer. The complete list of
exon skipping events is shown in Additional file 1: Table
S3.
We also utilized Ontologizer [44] to identify the

enriched GO terms for the same set of genes. GO
enrichment analysis is performed utilizing the Topology-
Elim algorithm. Then, the Westfall-Young Single Step
multiple testing correction procedure is applied. The

Fig. 9 A bar plot of the PSI (Percent Spliced-In) values of exon 17 in PRKCG gene. It illustrates the difference in the PSI values between normal and
tumor samples. The red bars represent the PSI of tumor samples while the green bars represent the normal samples. This figure is generated using
TCGA Spliceseq [42]
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most enriched biological process was "activation of Ras
GTPase activity" with adjusted p-value 0.00028, meaning
any process that initiates the activity of Ras superfamily
members. It is known that Ras family genes are oncogenes
[45–47]. Several human tumors have constitutively active
Ras proteins. The activation can be caused by mutations
in the Ras genes or by modifications in the upstream or
downstream signaling components in Ras pathways [47].
Additional file 1: Table S4 contains the complete list of
the biological processes that the predicted SRE sets are
involved in.

Tissue-specific combinatorial SREs
We performed a genome-wide analysis to study alterna-
tive splicing on multiple tissues (brain, heart, liver, and
muscle) (Badr E., ElHefnawi M., and Heath L. S.: Compu-
tational identification of tissue-specific splicing regulatory
elements in human genes from RNA-Seq data, submitted,
2015). The RNA-Seq data set from the Human BodyMap
project [48] was utilized. We used DEXSeq [49] to iden-
tify tissue-specific exons. Then, we applied CoSREM, to
identify combinatorial regulatory elements that may be
responsible for exon inclusion or exclusion across tissues.
Table 4 illustrates the number of discovered combinatorial
SRE sets for each tissue.
For each tissue, we identified a complicated regulatory

network of enhancers and silencers with many-to-many
relationship as stated earlier. We also identified two
splicing factor proteins (FMRP, and HNRNPLL) that may
have an antagonistic behavior that results in some exons
being included in the brain tissue and excluded in the
muscle tissue (Badr E., ElHefnawi M., and Heath L. S.:
Computational identification of tissue-specific splicing
regulatory elements in human genes from RNA-Seq data,
submitted, 2015).

Running time
Performance analysis of CoSREM is depicted in Fig. 11
with the actual numbers of generated MCSs and MCS
collections are illustrated in Table 5. The first level of
CoSREM, GenMCS, running time mainly depends on the

Table 4 Number of exons used in CoSREM and the resulted
combinatorial SREs. Taken from (Badr E., ElHefnawi M., and Heath
L. S.: Computational identification of tissue-specific splicing
regulatory elements in human genes from RNA-Seq data,
submitted, 2015)

No. of exons Combinatorial SREs

Brain 8858 366

Heart 7818 283

Liver 4564 51

Muscle 2410 45

Table 5 CoSREM performance analysis for different values of α
and θ , where time is in minutes

θ = 100 θ = 300

α MCSs MCS collections Time MCS collections Time

50 1606 1 12.359 0 10.866

100 1232 1 14.576 0 8.181

150 1011 132 17.477 1 10.536

200 873 323 21.440 1 15.514

250 811 574 28.159 2 22.508

300 763 763 35.358 2 30.424

350 729 854 39.584 22 33.815

400 696 964 44.508 47 37.839

450 652 994 45.621 72 38.402

500 611 948 45.055 83 37.991

550 572 923 44.303 104 37.733

600 533 879 43.529 117 37.609

650 484 837 42.215 135 36.328

700 440 779 37.489 145 33.824

750 410 790 37.162 165 33.692

800 373 726 33.875 162 30.949

850 329 666 30.106 162 28.303

900 305 719 30.38 173 28.233

950 286 750 29.966 183 27.774

1000 264 745 28.797 186 26.782

number of discovered patterns as well as the number of
explored branches [34]. For building the MCSTree, the
time complexity is O(2r) in the worst case, where r is
the number of MCSs. However, as stated before, multiple
pruning strategies are used to reduce the time taken to
build the tree. Traversing the tree utilizing the classic BFS
algorithm takes O|V | where V is the number of nodes in
theMCStree.

Discussion
We introduce CoSREM, a graph mining algorithm, to
discover co-occurring groups of exonic enhancers and
silencers. CoSREM utilizes experimental data to increase
the accuracy of the results. Using a de Bruijn graph for-
malism allowed us to identify regulatory elements with
different lengths without any prior assumptions on SRE
size.
One of the advantages of our algorithm is its general-

ity. CoSREM is designed to discover multiple SREs not
only pairs as with the current approaches. Our current
results do not include multiple SREs but the reason for
that is the filtering step. In fact, the MCS collections that
resulted from CoSREM include several larger groups of
SREs, not only pairs (see Additional file 1: Table S2). As
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Fig. 10 The number of generated MCSs and MCS sets using different values of α and θ

stated before, in the filtering step, we assume if SREs of the
same type are overlapped, they constitute one longer SRE.
This is one possibility to consider. Another possibility is
that they are different regulatory elements that overlap
and may have either cooperative or competitive behav-
ior [50]. We chose to focus on the first possibility in our
analysis. However, CoSREM provides the results for both
possibilities. We provide both outputs in our open source
package. So, the user can analyze both possibilities.

Another advantage is its flexibility. Utilizing a de Bruijn
graph-based model allows building the main graph from
any k-mer (based on the available data). The number
of vertices chosen to build the SRE graphs can change
according to the data as well. In our case, we utilized
the LEIsc scores as a measurement for ranking 6-mers.
The rank can be based on other criteria such as conser-
vation scores or other data sources. For example, utiliz-
ing data from CLIP experiments where both the RNA

Fig. 11 CoSREM time performance using different values for α in case of θ = 100 and 300
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binding protein and the location of its binding site is
experimentally identified [14]. Having a list of all pro-
tein binding sequences that are experimentally verified
can increase the probability of having a certain k-mer
as a putative SRE if a part of the sequence is in that
list. CoSREM can be applied on different parts of the
genome as well to identify combinatorial SREs. For exam-
ple, it can be applied to identify combinatorial SREs in
both of the exonic flanking regions. It can be applied
on intronic regions as well, depending on the data pro-
vided. We applied CoSREM on the first and last 50
nucleotides in the exons to discover SREs group that co-
occur in both regions, and we found several co-occurring
ESEs and, in some cases, the same ESE is repeated
in these two different parts of the exon as shown in
Additional file 1: Table S5.
Another aspect of CoSREM flexibility is the ability

to choose the user defined thresholds. We have tried
several values for the thresholds α and θ . As illustrated
in Fig. 10, as α increases, the number of potential SREs
decreases while the number of MCS collections increases
and then decreases. This behavior can be explained,
as α is the minimum number of exons that an SRE
should reside in, and with increasing α, SREs that satisfy
this constraint decreases and longer k-mer SREs are
eliminated. However, as we set the θ threshold to a
relatively small number (θ = 100), some of these longer
k-mers are combined again as co-occurring groups and
this is the reason for the increasing number of combi-
natorial SREs. Eventually with the constant decreasing
number of the resulted SREs, the number of the result-
ing MCS collections are decreased. We chose α to be
1000 to have a reasonable number of common exons
between 6-mers to start with. Another reason is the
time performance as shown in Fig. 11. The θ threshold
eliminates only the groups with smaller exon sets.
This is why we chose θ to be a small number relatively
to have all the results for further filtering. We tried CoS-
REM with α = 500 which resulted in 11 combinatorial
SRE groups. These groups were a subset of our previous
results with α = 1000.
The ability to identify genes with different splicing

events between normal and tumor samples, as in the
case of the PRKCG gene, may shed further light on
the important role that SREs may play in cancer pro-
gression and open the door for further experimental
validation. Wan [51] introduces a protocol to manip-
ulate the AS of exon 15 of the HER2 gene. Utilizing
splice switching oligonucleotide (SSO), the splice site
or an exonic enhancer is targeted to induce exon 15
skipping. That results in down-regulating the expres-
sion of HER2 mRNA and protein expression in HER2-
overexpressing breast cancer cell line SK-BR-3. In fact,
PRKCG has analogous behavior to HER2 where exon

17 is included in 100 % of the transcripts in case of
LUSC, KIRC, LIHC, PRAD, KICH cancer samples and
skipped in the normal tissues as we discussed ear-
lier. That may open the way for further experimental
validation.

Conclusions
We have presented CoSREM, a graph mining algorithm
to discover combinatorial SREs. Utilizing this approach
allowed us to identify different combinations of splic-
ing enhancers and silencers without assuming a pre-
defined size or limiting the algorithm to find only
pairs of SREs. Our approach can open new directions
to study SREs and the roles that AS may play in
diseases.
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