12 research outputs found
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes
Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments
The influence of chelating agents upon the dissimilatory reduction of Fe(III) byShewanella putrefaciens. Part 2. Oxo-and hydroxo-bridged polynuclear Fe(III) complexes
A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime
Microorganisms show an astonishing versatility in energy metabolism. They can use a variety of different catabolic electron acceptors, but they use them according to a thermodynamic hierarchy, which is determined by the redox potential of the available electron acceptors. This hierarchy is reflected by a regulatory machinery that leads to the production of respiratory chains in dependence of the availability of the corresponding electron acceptors. In this study, we showed that the γ-proteobacterium Shewanella oneidensis produces several functional electron transfer chains simultaneously. Furthermore, these chains are interconnected, most likely with the aid of c-type cytochromes. The cytochrome pool of a single S. oneidensis cell consists of ca. 700 000 hemes, which are reduced in the absence on an electron acceptor, but can be reoxidized in the presence of a variety of electron acceptors, irrespective of prior growth conditions. The small tetraheme cytochrome (STC) and the soluble heme and flavin containing fumarate reductase FccA have overlapping activity and appear to be important for this electron transfer network. Double deletion mutants showed either delayed growth or no growth with ferric iron, nitrate, dimethyl sulfoxide or fumarate as electron acceptor. We propose that an electron transfer machinery that is produced irrespective of a thermodynamic hierarchy not only enables the organism to quickly release catabolic electrons to a variety of environmental electron acceptors, but also offers a fitness benefit in redox-stratified environments
Is a General Theory of Life Possible? Seeking the Nature of Life in the Context of a Single Example
Recent origin of the methacrylate redox system in geobacter sulfurreducens AM-1 through horizontal gene transfer
The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.The work has been supported by a grant of the HHMI International Early Career Scientist Program (55007424), the Spanish Ministry of Economy and Competitiveness (EUI-EURYIP-2011-4320) as part of the EMBO YIP program, two grants from the Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa 2013–2017 (Sev-2012-0208)" and (BFU2012-31329), the European Union and the European Research Council under grant agreement/n335980_EinME
Bacterial Power: An Alternative Energy Source
The demand for energy and the limited supply of fossil fuels and their impact in the environment have required the development of alternative energy sources. Among the next generation of energy sources, microbial fuel cells (MFCs) have emerged as a promising technology due to their ability to recover energy from wastewaters in the form of electricity using electroactive microorganisms as catalysts. Among the various factors that affect power generation performance in MFCs, the efficiency of extracellular electron transfer (EET) is one of the most important. Several enzymes, specifically multiheme cytochromes, have been implicated in this process although the electron transfer chain organization remains to be fully understood. In this chapter, we review in detail the mechanisms that support EET from electroactive microorganisms to the anode in MFCs. We focus on the model organism Shewanella oneidensis MR-1, due to the existence of an extensive molecular characterization of its EET processes. The recent developments in the characterization of the multiheme cytochromes involved in these mechanisms will also be reviewed.authorsversionpublishe
