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Abstract

The origin and evolution of novel biochemical functions remains one of the key questions in
molecular evolution. We study recently emerged methacrylate reductase function that is
thought to have emerged in the last century and reported in Geobacter sulfurreducens strain
AM-1. We report the sequence and study the evolution of the operon coding for the flavin-
containing methacrylate reductase (Mrd) and tetraheme cytochrome (Mcc) in the genome
of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked pro-
teins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromopro-
teids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found
in 6-Proteobacteria and Deferribacteres are also organized into an operon and their phylo-
genetic distribution suggested that these two genes tend to be horizontally transferred to-
gether. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not
monophyletic with any of the homologs found in other Geobacter genomes. The acquisition
of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizon-
tal gene transfer event. However, the new function of the products of mrd and mcc may
have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

Introduction

Anaerobic bacteria frequently use unsaturated organic compounds as terminal electron accep-
tors [1]. Among such forms of respiration, fumarate respiration of anaerobes has been studied
most extensively [2-8]. During fumarate respiration bacterial cells reduce fumarate in the cyto-
sol (e.g. Wolinella succinogenes and Escherichia coli) or in the periplasm (as in Shewanella).
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The cytosolic fumarate-reducing enzyme complex is located at the inner side of the cyto-
plasmic membrane and consists of 3 or 4 protein subunits [2-7]. Periplasmic fumarate
reductases of the bacterial genus Shewanella are soluble monomers belonging to the flavocyto-
chrome ¢ family [9-16]. Data on enzyme systems and electron transport chain components
that use other double-bond compounds as terminal electron acceptors are often fragmentary
and contradictory or completely absent [1].

Anaerobic bacterium Geobacter sulfurreducens AM-1 was isolated in the study of decompo-
sition of methacrylate industry waste [17]. The G. sulfurreducens AM-1 strain is capable of
complete oxidation of acetate coupled to reduction of methacrylate (2-methylpropenoate), an
anthropogenic compound that serves as the terminal acceptor of the bacterial reductase chain
[18]. The study of Geobacter species (Deltaproteobacteria) is of applied interest due to their sig-
nificant role in bioremediation of radioactive metals [19-22]. They serve as important agents
in the global cycles of metals and carbon, reducing Fe(III) to Fe(II) and U(VI) to U(IV), oxidiz-
ing acetate and other organic compounds and participating in humus decomposition. Further-
more, they are fumarate-respiring organisms [19-21,23] and electrotrophs [24].

Transformation of methacrylate to isobutyrate occurs in the periplasm of bacterium G. sul-
furreducens AM-1 [25] by the periplasmic flavin-containing methacrylate reductase Mrd (50
kDa) [1,18]. Mrd activity depends on periplasmic tetraheme cytochrome ¢ Mcc (30 kDa), which
is the physiological electron donor for this enzyme. Furthermore, the two-component methac-
rylate redox system catalyzes reduction of acrylate, which is a compound found in nature [26],
at a rate comparable to that for synthetic methacrylate, while lacking fumarate reduction [18].

Membranes of bacterium G. sulfurreducens AM-1 contain menaquinone-8 (menaquinone
with 8 isoprene residues in the side chain), which transfers reducing equivalents to the methac-
rylate redox system from the citric acid cycle [1,18]. The electron carrier from menaquinone to
Mcc remains unknown, although the periplasmic cytochromes ¢ (12.5 and 15.5 kDa) and the
membrane cytochrome c¢ (67.6 kDa) are possible candidates [27].

N-terminal amino acid sequences, 27 and 29 amino acids in length, respectively, were iden-
tified from purified Mrd and Mcc [18]. Previous analysis suggested that the Mrd sequence was
homologous to flavocytochromes ¢ in several bacterial and a few archaeal genomes [28]. How-
ever, the length of the Mrd fragment was not long enough to perform a comprehensive se-
quence analysis of the two proteins that have recently evolved into the methacrylate redox
system. Furthermore, the Mcc amino acid sequence has not been investigated.

Methacrylate, a common monomer in polymer plastics and resins, is strictly a man-made
molecule [29]. It is also the main substrate of the methacrylate redox system and, therefore,
methacrylate-based respiration might have evolved sometime in the second half of the 20
century. The G. sulfurreducens AM-1 strain is the only one known strain capable of methacry-
late respiration [1,17] and, therefore, the sequences of the methacrylate redox system genes
provide an unparalleled opportunity to study the evolutionary history of a novel system
of respiration.

Here we report the sequence of the two genes of the methacrylate redox system from the
G. sulfurreducens AM-1 genome, analyze their translation products and study their evolution-
ary origins.

Results

Organization of the mrd and mcc genes in the Geobacter sulfurreducens
AM-1 genome

We sequenced the genome of G. sulfurreducens AM-1, obtaining a draft with a single contig.
To localize the mrd and mcc genes, we mapped the previously identified short 27 and 29 amino
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Fig 1. Organization of the operon of the methacrylate redox system in Geobacter sulfurreducens AM-1. The putative promoter is marked as small flag,

p-independent transcriptional terminators are marked by parentheses. Conservative sequences of promoter -35, -10 and sites of the binding of
transcriptional factors are enclosed in frames.

doi:10.1371/journal.pone.0125888.g001

acid sequences [18] to the genome sequence. We found that the genes coding for Mrd and Mcc
were arranged linearly and organized in one transcription unit (Fig 1). The mrd gene (1581 bp)
was separated by 56 nucleotides from mcc (696 bp). The genes were flanked by a transposase
gene 3297 nucleotides upstream of mrd separated from mrd by two pseudogenes and GTP
cyclohydrolase gene 505 nucleotides downstream of mcc. Both flanking genes have the same
orientation as mrd and mcc.

Putative promoter sites were found in close proximity to the predicted start codon. The se-
quences found 75 to 97 bp upstream of the translation start codon are similar to the consensus
promoter sequences typically found -10 to -35 from the transcription start site. Furthermore,
two transcription factor binding sites are predicted in this region, supporting the hypothesis
that the promoter is a common regulatory element of the redox operon. A potential p-indepen-
dent transcriptional terminator (energy of terminator -8.9) was found 75 nucleotides down-
stream of mcc. A second potential transcriptional terminator (terminator energy -9.4) is
located in the spacer between the two genes and partially overlapped the mcc gene. The extra
transcription termination signal located between the genes in the operon implies a complex
regulation of the redox system at the transcriptional level.

Evolution of the methacrylate redox system

To elucidate the evolutionary history of the methacrylate redox system, we searched for ortho-
logues of mrd and mcc. First, we searched for homologs in the eleven Geobacter genomes avail-
able in GenBank. For mrd the closest homologs by protein sequence divergence were found in
three strains: G. lovleyi SZ (YP_001951186.1, YP_001953845.1, YP_001953762.1), G. bemid-
jiensis Bem (YP_002140822.1, YP_002140385.1) and Geobacter sp. M21 (YP_003023900.1)
(Table 1, Fig 2a). One of the homologs from G. lovleyi SZ, capable of chlororespiration, was the
only protein from this list (YP_001951186.1) that does not contain the heme-binding sites
CXXCH. Other homologous sequences found in Geobacter genomes have 4 heme-binding sites
and different regions of their sequence are homologous to either Mrd or Mcc from the methac-
rylate redox system of G. sulfurreducens AM-1 (Tables 1 and 2; Fig 2a and 2b). Homology of
Mcc from G. sulfurreducens AM-1 was observed for N-terminal amino acid sequence of Geo-
bacter species flavocytochromes (usually 125 amino acids from the N-terminus). Sequence
identity of Mrd with the flavocytochromes was higher (see column 5 of Tables 1 and 2) than
for the region homologous to Mcc, and found in the C-terminal region (usually between the
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Table 1. Homologs of methacrylate reductase (Mrd).

Class Species GenBank Annotated % Length of Length, Type of Tat-motif Heme-
accession function Similarity alignment calculated cleavable binding
number /ldentity  with Mrd, Mr (kDa) of signal sites

e-value immature  peptide CXXCH
protein (length)

A- Geobacter methacrylate 100/100 526 aa 57.2 Tat (55 aa) RRDFLK no

Proteobacteria sulfurreducens AM- reductase kDa

1

A- Anaeromyxobacter YP_002134140.1 flavocytochrome 78/64 96, 0.0 515 aa 55.5 Tat (38 aa) RRAMLK no

Proteobacteria sp. K c kDa

A- Anaeromyxobacter YP_002492269.1 flavocytochrome 78/64 96, 0.0 515 aa 55.6 Tat (38 aa) RRAMLK no

Proteobacteria dehalogenans 2CP- c kDa

1
A- Anaeromyxobacter YP_465303.1 flavocytochrome 78/62 96, 0.0 515 aa 55.7 Tat (38 aa) RRAILK no
Proteobacteria dehalogenans c kDa

2CP-C

A- Desulfatibacillum YP_002429921.1 flavocytochrome 78/65 95, 0.0 511 aa 54.9 Tat(42aa) RRSVIK no

Proteobacteria alkenivorans AK-01 c kDa

Deferribacteres Denitrovibrio YP_003505239.1 flavocytochrome 78/62 95, 0.0 507 aa 55.0 Tat (40 aa) RRGLLQ no

acetiphilus DSM c kDa
12809

A- Geobacter lovleyi  YP_001951186.1 flavocytochrome 53/39 96,8¢® 517 aa56.0 Tat (43 aa) RRSFLK no

Proteobacteria SZ c kDa

A- Geobacter lovieyi YP_001953845.1 flavocytochrome 54/39 87,2¢e7! 596 aa 63.3 Sec (25 no 4

Proteobacteria SZ c kDa aa)

A- Geobacter lovleyi  YP_001953762.1 flavocytochrome 51/38 90, 5¢772 589 aa 61.7 Sec (26 no 4

Proteobacteria SZ c kDa aa)

A- Geobacter YP_002140822.1 flavocytochrome 55/40 88,1e™”® 598 aa 63.3 Sec (25 no 4

Proteobacteria bemidjiensis Bem c kDa aa)

A- Geobacter YP_002140385.1 flavocytochrome 51/38 88, 572 591 aa61.5 Sec(21- no 4

Proteobacteria bemidjiensis Bem c kDa 27 aa)

A- Geobacter sp. M21  YP_003023900.1 flavocytochrome 55/40 88,178 598 aa 63.2 Sec (25 no 4

Proteobacteria c kDa aa)

r- Shewanella YP_749210.1 flavocytochrome  55/38 95,8¢°  510aa54.9 Tat(35aa) RRHFLK no

Proteobacteria frigidimarina c kDa

NCIMB 400
I- Shewanella YP_751265.1 flavocytochrome 53/36 86, 3e° 588 aa 63 Sec (22 no 4
Proteobacteria frigidimarina (Ifcs) c kDa aa)
NCIMB 400
I- Shewanella YP_751192.1 flavocytochrome 50/34 93,1 507 aa 53.8 Tat (34 aa) RRNIIKK no
Proteobacteria frigidimarina c kDa
NCIMB 400
I- Shewanella NP_716599.1 periplasmic 54/38 86, 2¢772 596 aa 62.4 Sec (25 no 4
Proteobacteria oneidensis MR-1 (Fccz) fumarate kDa aa)
reductase FccA
r- Shewanella NP_720136.1*  urocanate 39/36 89,2e%  582aa62.2 Sec(30 no no
Proteobacteria oneidensis MR-1 reductase kDa aa)
S0O_4620
I- Shewanella QO7WU7.2* Periplasmic 51/35 84,25 596 aa63.0 Sec (25 no 4
Proteobacteria frigidimarina fumarate kDa aa)
NCIMB 400 reductase;
flavocytochrome
c
(Continued)
PLOS ONE | DOI:10.1371/journal.pone.0125888 May 11,2015 4/15



el e
@ ' PLOS ‘ ONE Horizontal Gene Transfer of the Methacrylate Redox System

Table 1. (Continued)

Class Species GenBank Annotated % Length of Length, Type of Tat-motif Heme-
accession function Similarity alignment calculated cleavable binding
number /ldentity with Mrd, Mr (kDa) of signal sites

e-value immature  peptide CXXCH
protein (length)

E- Wolinella NP_906388.1* flavocytochrome 51/35 87, 2e°7 515 aa 55.9 Tat(34aa) RRDLIK no

Proteobacteria succinogenes DSM c flavin subunit kDa

1740 FccA

* The last three proteins in the table have lower sequence similarity with methacrylate reductase. They were included in the table as they have been
characterized biochemically.

doi:10.1371/journal.pone.0125888.1001

140™ and 590™ amino acids). Thus, the methacrylate redox system homologs of bacteria of the
genus Geobacter are often present as one multifunctional flavoprotein, combining functions of
electron delivery and catalysis of reduction.

A diversity of other cytochrome ¢ protein sequences were found to be coded in Geobacter
genomes [30-36], which were much more diverged than the Geobacter homologs we consid-
ered in our phylogenetic analysis. None of these distantly related genes were considered in
our analysis.

Homologs of both Mrd and Mcc with higher sequence identity were found outside the Geo-
bacter genus in a few species with a broad phylogenetic distribution, indicating a complex evo-
lutionary origin of these proteins in G. sulfurreducens AM-1. The distribution of Mrd homologs
varied across bacterial clades. The closest of the identifiable Mrd homologs (78% similarity;
Table 1, Fig 2a), which were annotated as flavoproteins, were from J-Proteobacteria: Anaero-
myxobacter dehalogenans 2CP-C (YP_465303.1), A. dehalogenans 2CP-1 (YP_002492269.1),
A. sp. K (YP_002134140.1) and Desulfatibacillum alkenivorans AK-01 (YP_002429921.1) and
Deferribacteres: Denitrovibrio acetiphilus DSM 12809 (YP_003505239.1).

Desulfatibacillum alkenivorans AK-01 Geobacter bemidjiensis Bem (YP_002140385)
Denitrovibrio acetiphilus DSM 12809 Geobacter lovieyi sz
Anaeromyxobacter dehalogenans 2CP-1
Geobacter sp. M21
Anaeromyxobacter dehalogenans 2CP-C

Geobacter sulfurredicens AM-1 Geobacter bemidjiensis Bem (YP_002140822)

Geobacter sp. M18

Streptococcus marimammalium

Shewanella frigidimarina NCIMB 400 Denitrovibrio acetiphilus DSM 12809

Geobacter lovleyi SZ (YP_001953762) 0.98
Anaeromyxobacter dehalogenans 2CP-C
Geobacter bemidjiensis Bem (YP_002140385) 082

Desulfatibacillum alkenivorans AK-01

Geobacter lovieyi SZ (YP_001953845)

Geobacter sp. M21 Parasutterella excrementihominis
0.74

A Geobacter bemidjiensis Bem (YP_002140822) B Geobacter sulfurreducens AM-1

Fig 2. Phylogeny reconstructions for Mrd (A) and Mcc (B) homologs. Unrooted trees are shown with posterior probabilities. Unlabeled nodes have a
posterior probability of 1. The following sequences were used. A (Mrd): D. alkenivorans AK-01 (YP_002429921.1), D. acetiphilus DSM 12809
(YP_003505239.1), A. dehalogenans 2CP-1 (YP_002492269.1), A. dehalogenans 2CP-C (YP_465303.1), S. marimammalium (WP_018370472.1), S.
frigidimarina NCIMB 400 (YP_751265.1), G. lovileyi SZ (YP_001953845.1, YP_001953762.1), G. bemidjiensis Bem (YP_002140822.1, YP_002140385.1),
Geobacter sp. M21 (YP_003023900.1). B (Mcc): P. excrementihominis YIT 11859 (WP_008864032.1), D. alkenivorans AK-01 (YP_002429920.1), D.
acetiphilus DSM 12809 (YP_003505238.1), A. dehalogenans 2CP-C (YP_465304.1), G. bemidjiensis Bem (YP_002140822.1, YP_002140385.1), G. lovleyi
SZ (YP_001953845.1), G. sp. M18 (YP_004200524.1), G. sp. M21 (YP_003023900.1).

doi:10.1371/journal.pone.0125888.9002
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Table 2. Homologs of cytochrome ¢ (Mcc).

Class Species GenBank Annotated function % Length of Length, Type of Heme-
accession Similarity alignment calculated cleavable binding
number /ldentity  with Mcc, Mr (kDa) of signal sites

e-value immature peptide CXXCH
protein (length)

A- Geobacter cytochrome c 100/100 231 aa Sec (23 4-7

Proteobacteria  sulfurreducens AM- aa)

1

A- Anaeromyxobacter YP_002134139.1  hypothetical protein  55/42 84, 9e™° 221aa229 Sec(21- 7

Proteobacteria sp. K AnaeK_1781 kDa 24 aa)

A- Anaeromyxobacter  YP_002492268.1 hypothetical protein  56/42 85, 2% 221 aa22.9 Sec (24 7

Proteobacteria dehalogenans 2CP- A2cpi1_1860 kDa aa)

1
A- Anaeromyxobacter YP_465304.1* hypothetical protein  56/42 84, 3¢ 233 aa24.1 Sec (24 7
Proteobacteria dehalogenans Adeh_2097 kDa aa)

2CP-C

A- Desulfatibacillum YP_002429920.1  hypothetical protein  51/40 44,2¢"° 109 aa 12.1 no 4

Proteobacteria  alkenivorans AK-01 Dalk_0747 kDa

Deferribacteres Denitrovibrio YP_003505238.1* hypothetical protein  48/36 94, 132 208 aa22.9 Sec (18 7

acetiphilus DSM Dacet_2522 kDa aa)
12809

A- Geobacter lovileyi YP_001953845.1 flavocytochrome ¢ 54/44 42,1e™3 596 aa 63.3 Sec (25 4

Proteobacteria SZ kDa aa)

A- Geobacter lovileyi YP_001953762.1 flavocytochrome c 50/39 42, 4e7° 589 aa 61.7 Sec (26 4

Proteobacteria SZ kDa aa)

A- Geobacter YP_002140822.1 flavocytochrome c 48/42 41, 2e" 598 aa 63.3 Sec (25 4

Proteobacteria bemidjiensis Bem kDa aa)

A- Geobacter YP_002140385.1 flavocytochrome c 59/44 35, 172 591 aa 61.5 Sec (21- 4

Proteobacteria bemidjiensis Bem kDa 27 aa)

A- Geobacter sp. M18  YP_004200524.1 flavocytochrome ¢ 62/51 35,3¢"* 584 aa 60.7 Sec (22— 4

Proteobacteria kDa 23 aa)

A- Geobacter sp. M21  YP_003023900.1 flavocytochrome c 48/42 41, 7eM 598 aa 63.2 Sec (25 4

Proteobacteria kDa aa)

I- Shewanella QO07WU7.2 (Fcc;) fumarate reductase  53/38 48, 6e™" 596 aa 63.0 Sec (25 4

Proteobacteria frigidimarina flavoprotein subunit; kDa aa)

NCIMB 400 flavocytochrome c

Shewanella YP_751265.1 flavocytochromec  51/39 40,1e° 588aa63  Sec (22 4

frigidimarina (Ifcs) kDa aa)

NCIMB 400
I- Shewanella YP_751191.1 tetraheme 50/34 41, 6e7 122 aa 13.9 Sec (22 4
Proteobacteria frigidimarina cytochrome c kDa aa)

NCIMB 400
I- Shewanella NP_716599.1 periplasmic 59/46 35,3¢7° 596 aa 62.4 Sec (25 4
Proteobacteria oneidensis MR-1 (Fccs) fumarate reductase kDa amMx)

FccA

B- Parasutterella WP_008864032.1 hypothetical protein  50/33 80, 7 208 aa 22.7 Sec (19 6—7
Proteobacteria excrementihominis HMPREF9439_01147 kDa aa)

YIT 11859
E- Wolinella NP_906387.1** flavocytochrome ¢ 44/28 51, 0.002 146 aa 16.6 Sec (26 4
Proteobacteria succinogenes DSM heme subunit kDa aa)

1740

*Annotated by us.

**The last protein in the table has lower sequence similarity than others. It was included because it has been characterized biochemically.

doi:10.1371/journal.pone.0125888.t002
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Interestingly, the same species that harbor the closest homologs of Mrd also have the closest
homologs of Mcc (48-58% similarity; Table 2, Fig 2b): A. dehalogenans 2CP-C (YP_465304.1),
A. dehalogenans 2CP-1 (YP_002492268.1), A. sp. K (YP_002134139.1), D. alkenivorans AK-01
(YP_002429920.1), D. acetiphilus DSM 12809 (YP_003505238.1). We annotated them as mul-
tiheme cytochrome ¢ (Table 2). The redox systems of these organisms were represented by two
proteins with their genes organized in one transcriptional unit. The only exception to having a
close homologue of both Mdr and Mcc was Parasutterella excrementihominis YIT 11859 (B-
Proteobacterium) that had a close homolog only of Mcc (WP_008864032.1, Table 2, Fig 2b).

To confirm that the G. sulfurreducens AM-1 Mrd and Mcc homologs found in other Geo-
bacter species are not their direct orthologues, we performed a phylogenetic analysis of the ho-
mologs, including several of the sequences from the Geobacter genus that were most similar to
Mrd of G. sulfurreducens AM-1. The analysis showed that G. sulfurreducens AM-1 Mrd and
Mcc share a closer common ancestor with sequences from distant clades of bacteria, confirm-
ing that the methacrylate redox system genes, mrd and mcc, were likely acquired by G. sulfurre-
ducens AM-1 through recent horizontal gene transfer and that their orthologues are not
present in the sequenced Geobacter genomes (Fig 2a and 2b).

Products of the methacrylate redox system genes

The protein coded by mrd has 526 amino acids (Mr 57.2 kDa). The N-terminal amino acid se-
quence contains a 55 amino acid-long signal peptide with the Tat-motif RRDFLK in position
25 (Fig 3, Table 1). Thus, the mature protein is predicted to contain 471 amino acids (estimated
Mr 51.4 kDa). Previous results have shown that the mature Mrd has 1 mol FAD [18]; therefore,
the Mr of the mature Mrd with FAD should be 52.2 kDa, which is consistent with experimental
data. We validated the start and flanking regions of mrd by Sanger sequencing of both strands,
which were identical to the sequences obtained through the next generation sequencing of the
entire genome. Thus, the unusually long predicted signal peptide was confirmed not to result
from sequencing or assembly error.

The mcc gene codes for a protein 231 amino acids long (Mr 24.5 kDa). The N-terminal re-
gion contains a shorter Sec-type signal peptide of 23 amino acids (Fig 4, Table 2) with the ma-
ture protein predicted to have 208 amino acids (Mr 22.1 kDa). Previous experiments showed
that the mature Mcc had 4 mol of heme ¢ and a Mr of nearly 30 kDa [16]. Consistent with
these results, we found four heme-binding motifs CXXCH [37] with the GENE RUNNER pro-
gram. The Mr of a mature Mcc with 4 hemes is 24.8 kDa, substantially lower than expected. A
visual analysis of the Mcc sequence revealed three more heme-binding motifs CXXCH, which
brought the Mr of the mature Mcc with 7 hemes to 27.9 kDa (Fig 4).

The closest of the identifiable homologs of Mrd (Fig 2a) are likely FAD-binding proteins
and flavocytochromes c, as indicated by the conserved phosphate-binding regions of N-termini
(Fig 3). The phosphate-binding site is typical for all FAD- and NAD(P)H-dependent oxidore-
ductases: xhxhGxGxxGxxxhxxh(x)ghxhE(D), where x—any amino acid, h—hydrophobic
amino acid [38]. In the case of Mrd this site was located between amino acids 69 and 98 of the
immature protein (Fig 3). The central part of the consensus, GxGxxG, is a glycine-rich part of
the loop, linking the first B-sheet in the Rossmann fold with the first o-helix directed to the py-
rophosphate residue for charge compensation. Generally this motif has 3-strand-turn-f-strand
structure and forms a flexible clamp, surrounding and anchoring the pyrophosphate of FAD
[39]. Another conservative FAD-binding site, which is an eleven amino acid segment T(S)
xxxxxF(Y)hhGD(E) [40], was present in amino acid sequences of Mrd and its homologs. The
site was slightly truncated, without the first threonine while all other amino acids were present
(487-491).
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Fig 3. Multiple protein sequence alignment of Mrd coded in Geobacter sulfurreducens AM-1 and its closest flavocytochrome ¢ homologs from

Desulfatibacillum alkenivorans AK-01 (YP_002429921.1); Denitrovibrio acetiphilus DSM 12809 (YP_003505239.1) and Anaeromyxobacter
dehalogenans 2CP-1 (YP_002492269.1). Amino acid sequences of Mrd homologs (YP_002134140.1, YP_002492269.1, YP_465303.1) of all three
mentioned representatives of the genus Anaeromyxobacter are very similar. Therefore, we used the sequences of the Mrd homolog only from A.

dehalogenans 2CP-1 (YP_002492269.1) as one representative of the genus. Cleavable signal peptides of Tat type are underlined; the Tat motif is shown in
bold. Conserved pyrophosphate-binding sites and amino acids presumably involved in catalysis are highlighted in green. Probable proton donor is marked
inred.

doi:10.1371/journal.pone.0125888.9003

The heme-binding sites of Mcc homologs identified by the phylogenetic analysis (Fig 2b)
are shown in Fig 4. Their presence suggests that these homologs, not annotated as having any
function, are cytochromes ¢, containing four heme-binding sites (YP_002429920.1) in D. alke-

nivorans AK-01 or seven heme-binding sites in the other species.

The Mrd sequence of G. sulfurreducens AM-1 had a higher level of similarity with its homo-
logs (Table 1) than Mcc of G. sulfurreducens AM-1 (Table 2). This observation is consistent
with a relatively poor conservation of cytochromes c [36] and probably with evolutionary early

origin of the flavin-containing Mrd homologs.
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Fig 4. Multiple protein sequence alignment of Mcc from Geobacter sulfurreducens AM-1 and its cytochrome c homologs from Anaeromyxobacter
dehalogenans 2CP-1 (YP_002492268.1); Parasutterella excrementihominis YIT 11859 (WP_008864032.1) and Denitrovibrio acetiphilus DSM 12809
(YP_003505238.1). Amino acid sequences of Mcc homologs (YP_002134139.1, YP_002492268.1, YP_465304.1) of all three representatives of the genus
Anaeromyxobacter are very similar. We used the sequences of the Mcc homolog only from A. dehalogenans 2CP-1 (YP_002492268.1) as one
representative of the genus. The amino acid sequences of protein YP_002429920 from D. alkenivorans AK-01 (YP_002429920.1), which is not shown here,
is much shorter than those included, which makes it difficult to analyze. Cleavable signal peptides of Sec type are underlined. Heme-binding sites are marked
in italics and highlighted in yellow. Sites, detected by GENERUNR program, are in bold.

doi:10.1371/journal.pone.0125888.9004

Discussion

The methacrylate redox system genes in the genome of G. sulfurreducens AM-1 appear to be
arranged in a single operon. The clear absence of orthologs in the genomes of several other
Geobacter genomes, coupled with a lack of closely-related orthologs in genomes of bacteria
from any other closely related genus, strongly suggests that the methacrylate redox system
genes were acquired recently by the G. sulfurreducens AM-1 strain (Fig 5). The intriguing simi-
larity of the phylogenetic distribution of the closely related homologs of both genes, mrd and
mcc, suggests that these two genes tend to be horizontally transferred together, confirming
their close functional relationship. The high congruence of the evolutionary history of the mrd
and mcc genes is consistent with their organization into a single operon and confirms their
joint functional role.

Unfortunately, for most of the identified homologs experimental data of their enzyme speci-
ficity are not available. Such lack of experimental data precludes us from understanding wheth-
er or not the acquisition of the methacrylate reducing function occurred before or after the
horizontal gene transfer. Furthermore, even the closest of the identified homologs were evi-
dently too diverged to be identified as the origin of the horizontal gene transfer. This conclu-
sion is based on the observation of the divergence of Mrd and Mcc sequences from their closest
homologs in comparison to the high similarity of genomes of different Geobacter species.

Nevertheless, some experimentally characterized proteins can be distinguished among the
homologs of the methacrylate redox system. The characterized homologs of Mrd include flavo-
protein FccA (NP_906388.1) from Wolinella succinogenes [41], an urocanate reductase
SO_4620 (NP_720136.1; [42]) and periplasmic fumarate reductases Fcc; (Q07WU7.2; [9,
10,43]), Ifcs (YP_751265.1; [11,12]) and Fecs (NP_716599.1; [13-15]) from bacteria of the
genus Shewanella (Table 1). Shewanella’s periplasmic fumarate reductases are cytochromes ¢
homologs as well (Table 2). Therefore, the methacrylate redox system and its homologs reduce
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Streptococcus agalactiae 2603V/R

Denitrovibrio acetiphilus DSM 12809

Shewanella frigidimarina NCIMB 400

Desulfatibacillum alkenivorans AK-01

Anaeromyxobacter dehalogenans 2CP-C

—I— Geobacter sulfurreducens AM-1

Geobacter lovieyi SZ

Geobacter sp. M18

Geobacter sp. M21

Geobacter bemidjiensis Bem

Fig 5. An unrooted phylogeny reconstruction of 16s RNA from the strains coding for mrd and mcc homologs or from their closest relatives. The
branch on which the horizontal gene transfer of the operon carrying the mrd and mcc genes has occurred is indicated by a red mark.

doi:10.1371/journal.pone.0125888.9005

the double bonds of unsaturated organic compounds (such as acrylate, methacrylate, uroca-
nate, fumarate), using them as terminal acceptors of reducing equivalents. None of the species
or strains described previously are known to grow by respiration of methacrylate.

Conserved amino acids (histidine-461 and arginines—R501 and R353, Fig 3), found in the
Mrd sequence, may stabilize the transition state during catalysis by providing delocalization of
the negative charge of the intermediate carbanion, in a similar manner as in Shewanella fuma-
rate reductases [16]. Point mutagenesis showed that the arginine homologous to R353 of Mrd
is the proton donor for the carbanion [44]. The fumarate reductase arginine homologous to
R501 in Mrd interacts through its guanidino group with both oxygen atoms of a carboxyl
group of succinate, positioning it parallel to the isoalloxazine ring [16]. Mrd does not have two
other conserved residues that interact with succinate or fumarate. It has a tryptophan instead
of histidine at position 311 and valine instead of serine or threonine at position 324. Since
these amino acids are also involved in substrate binding, it is possible that their absence is due
to substrate specificity of Mrd of G. sulfurreducens AM-1.

Biogenesis of chromoproteids of the methacrylate redox system probably occurs via differ-
ent mechanisms. The immature Mrd protein has a longer and less hydrophobic Tat-type signal
peptide sequence (Table 1, Fig 3), characteristic for Bacteria, Archaea and chloroplast proteins.
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Such proteins are transported through the membrane after folding [45]. A Sec-type signal pep-
tide sequence was found in the immature Mcc protein (Table 2, Fig 4). Such proteins are trans-
located across the membrane before the acquisition of tertiary structure [45,46], with heme
attachment occurring in the periplasm [37,46]. Thus, both the Tat- and Sec-type secretory
mechanisms are likely to be required for maturation of the methacrylate redox system proteins.

Genes of the methacrylate redox system components of G. sulfurreducens AM-1 are orga-
nized similarly to genes for their closest homologs in four representatives of §-Proteobacteria
and one representative of Deferribacteres (see RESULTS). Thus, it is possible that these organ-
isms may also either be able to grow using methacrylate as a terminal electron acceptor or at
least show some methacrylate-reducing activity.

The methacrylate redox system is representative of a comprehensive family of flavocyto-
chromes c and flavoproteins with reducing properties. These reducing complexes probably use
a natural substrate, for example, acrylate produced by marine bacteria [26,47]. The rates of re-
duction of acrylate and methacrylate by the methacrylate redox system are comparable [18]
supporting the hypothesis of the use of some natural substrate by these proteins. Methacrylate
reduction may be an additional characteristic of this redox system.

Components of the methacrylate redox system from G. sulfurreducens AM-1 and lyase of
dimethylsulphoniopropionate (DMSP) of DddY-type from marine microorganisms have some
similar features: 1) a distribution in certain groups of proteobacteia, 2) gene organization with
cytochrome ¢ genes adjacent to the enzyme genes (reductase or lyase) and 3) presence of cleav-
able signal peptide in the immature enzymes. The enzyme DddY catalyzes the cleavage of
DMSP to the volatile compound dimethyl sulphide (DMS) and the toxic acrylate [47]. We sug-
gest that the reductase evolved to transform the toxic acrylate, formed by lyases, to a less toxic
compound. These cytochromes ¢, whose genes are located near the reductase or lyase genes,
may be homologous.

The methacrylate redox system evolved from a cytochrome ¢ and a flavoprotein. These pro-
teins were recently acquired by horizontal gene transfer by G. sulfurreducens AM-1 either be-
fore or after the evolution of the substrate specificity. Furthermore, these proteins likely
constitute an adaptive mechanism to allow growth in sludge microbial communities, in partic-
ular, in wastewater of plastic manufacture factories.

Experimental Procedures

The object of investigation was anaerobic bacterium G. sulfurreducens AM-1 from the culture
collection of Laboratory of microorganisms adaptation at the Institute of Biochemistry and
Physiology of Microorganisms (Pushchino, Russia).

The subject of investigation was the operon containing genes mrd and mcc of the methacry-
late redox system of G. sulfurreducens AM-1.

Genome sequencing

The draft genome sequences were obtained by pair-end library and mate pair library sequences
by Illumina HiSeq 2000. The resulting contigs were submitted to GenBank under the accession
numbers of CP010430.

Genome assembly

The genome was assembled de novo using SOAPdenovo [48], Velvet [49] and SPAdes Genome
Assembler [50]. The quality of assembly was estimated by running QUAST [51] and by align-
ing of the contigs to the full genomes of Geobacter sulfurreducens available in GenBank:
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Geobacter sulfurreducens KN400 and Geobacter sulfurreducens PCA. The alignments were
done with Mauve [52].

The contigs obtained by SPAdes turned out to be the best. Nevertheless, SPAdes failed to as-
semble the genome into one sequence. We used SSPACE [53] for scaffolding. This allowed us
to obtain the genome as just one contig. After this we applied GapFiller [54] for closing gaps.

Sequence analysis

Detection of the mrd and mcc genes of the bacterium G. sulfurreducens AM-1 and comparative
amino acid analysis were performed with the BLAST program [55] from the National Center
of Biotechnology Information server, National Library of Medicine, USA (NCBI; http://www.
ncbi.nlm.nih.gov).

Analysis of nucleotide sequences of the studied operon was carried out using the Vector NTI
program [56]. The presence and types of promoters and terminators were detected with a series
of programs, available on the site http://linux1.softberry.com.

The sequencing of the mrd start and mrd flanking regions was performed by the Sanger
method with oligonucleotide primers FA2 (5" ~ACGCTTCTCAACCAGACCGG) and RA2 (5’ -
CATCGGTCCAAGCGTTATATTCAC). Amplification for the nucleotide sequencing was per-
formed by the PCR method using oligonucleotide primers—FG1 (5" ~CAGAACAGGCCAC
GCTTTGC) and RG1 (5’ - GTGCGGTACTTGCTGTGCCC).

All amino acid sequences of proteins and nucleotide sequences of genes are available in the
Databases GenBank, Gene, Genome, Nucleotide, Protein from the server of the NCBIL.

Determination of the cleavable signal peptides was conducted with the programs PRED-TAT
[45] and SignalP [57], available on servers of the Department of Computer Science and Bio-
medical Informatics, University of Central Greece, Lamia, Greece (http://www.compgen.org)
and the Center for Biological Sequence Analysis, Department of Systems Biology, Technical
University of Denmark, Lyngby, Denmark (http://www.cbs.dtu.dk).

Program GENERUNR (http://www.generunner.net) was used for the detection of conserved
amino acid sequences and calculation of molecular weight. The number of hemes in homologi-
cal proteins was predicted as number of heme-binding sites CXXCH (where C is cysteine, H is
histidine, X is any amino acid) [37].

Multiple protein sequence alignment of methacrylate redox system components and their
homologs was performed with MUSCLE [58]. Phylogenies were reconstructed using the
MrBayes v3.2 program [59], with mcmc = 3000000 and burnin = 2500 for sump and sumt.
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