38 research outputs found
Quantum dot dephasing by fractional quantum Hall edge states
We consider the dephasing rate of an electron level in a quantum dot, placed
next to a fluctuating edge current in the fractional quantum Hall effect. Using
perturbation theory, we show that this rate has an anomalous dependence on the
bias voltage applied to the neighboring quantum point contact, which originates
from the Luttinger liquid physics which describes the Hall fluid. General
expressions are obtained using a screened Coulomb interaction. The dephasing
rate is strictly proportional to the zero frequency backscattering current
noise, which allows to describe exactly the weak to strong backscattering
crossover using the Bethe-Ansatz solution
Photo-assisted Andreev reflection as a probe of quantum noise
Andreev reflection, which corresponds to the tunneling of two electrons from
a metallic lead to a superconductor lead as a Cooper pair (or vice versa), can
be exploited to measure high frequency noise. A detector is proposed, which
consists of a normal lead--superconductor circuit, which is capacitively
coupled to a mesoscopic circuit where noise is to be measured. We discuss two
detector circuits: a single normal metal -- superconductor tunnel junction and
a normal metal separated from a superconductor by a quantum dot operating in
the Coulomb blockade regime. A substantial DC current flows in the detector
circuit when an appropriate photon is provided or absorbed by the mesoscopic
circuit, which plays the role of an environment for the junction to which it
couples. Results for the current can be cast in all cases in the form of a
frequency integral of the excess noise of the environment weighted by a kernel
which is specific to the transport process (quasiparticle tunneling, Andreev
reflection,...) which is considered. We apply these ideas to the measurement of
the excess noise of a quantum point contact and we provide numerical estimates
of the detector current.Comment: 19 pages, 11 figure
Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease
Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 (-/-) mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 (-/-) mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 (-/-) mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 (-/-) mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing
Mitochondrial ATP synthase: architecture, function and pathology
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F1, situated in the mitochondrial matrix, and Fo, located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions
Quantum dot dephasing by fractional quantum Hall edge states
We consider the dephasing rate of an electron level in a quantum dot, placed next to a fluctuating edge current in the fractional quantum Hall effect. Using perturbation theory, we show that this rate has an anomalous dependence on the bias voltage applied to the neighboring quantum point contact, which originates from the Luttinger liquid physics which describes the Hall fluid. General expressions are obtained using a screened Coulomb interaction. The dephasing rate is strictly proportional to the zero frequency backscattering current noise, which allows to describe exactly the weak to strong backscattering crossover using the Bethe-Ansatz solution