5,296 research outputs found
Mie and bragg plasmons in subwavelength silver semi-shells
2D arrays of silver semi-shells of 100 and 200 nm diameter display complex reflection and transmission spectra in the visible and near-IR. Here these spectral features are deconstructed and it is demonstrated that they result from the coupling of incident light into a delocalized Bragg plasmon, and the latter's induction of localized Mie plasmons in the arrays. These phenomena permit the excitation of transverse dipolar plasmon resonances in the semi-shells despite an ostensibly unfavorable orientation with respect to normally incident light. The resulting spectral feature in the mid-visible is strong and tunable. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA
EXCITATION CONDITIONS IN THE MULTI-COMPONENT SUBMILLIMETER GALAXY SMM J00266+1708
We present multiline CO observations of the complex submillimeter galaxy SMMJ00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z = 2.742). Based on followup CO(1–0), CO(3–2), and CO(5–4) mapping,
SMMJ00266+1708 appears to have two distinct components separated by ∼ 500 kms−1 that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blue-shifted component dispersion-dominated and the red-shifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical
conditions in their molecular gas may not be alike. We tentatively infer that SMMJ00266+1708 is an on going merger with a mass ratio of (7.8±4.0)/ sin2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component’s properties are consistent with a
single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modelling of the red-shifted component, although motivated by a CO(1–0) size larger than the CO(3–2) size, is inconclusive. SMMJ00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ∼ 1′′ resolution of our observations could not have distinguished between the two components due to their separation (0.′′73 ± 0.′′06),
illustrating that the additional velocity information provided by spectral line studies is important for
addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys
Excitation Conditions in the Multi-component Submillimeter Galaxy SMM J00266+1708
We present multiline CO observations of the complex submillimeter galaxy SMM J00266+1708. Using the Zpectrometer on the Green Bank Telescope, we provide the first precise spectroscopic measurement of its redshift (z=2.742). Based on followup CO(1-0), CO(3-2), and CO(5-4) mapping, SMM J00266+1708 appears to have two distinct components separated by ~500 km/s that are nearly coincident along our line of sight. The two components show hints of different kinematics, with the blue-shifted component dispersion-dominated and the red-shifted component showing a clear velocity gradient. CO line ratios differ slightly between the two components, indicating that the physical conditions in their molecular gas may not be alike. We tentatively infer that SMM J00266+1708 is an ongoing merger with a mass ratio of (7.8+/-4.0)/sin^2(i), with its overall size and surface brightness closely resembling that of other merging systems. We perform large velocity gradient modeling of the CO emission from both components and find that each component's properties are consistent with a single phase of molecular gas (i.e., a single temperatures and density); additional multi-phase modeling of the red-shifted component, although motivated by a CO(1-0) size larger than the CO(3-2) size, is inconclusive. SMM J00266+1708 provides evidence of early stage mergers within the submillimeter galaxy population. Continuum observations of J00266 at the ~1" resolution of our observations could not have distinguished between the two components due to their separation (0.73" +/- 0.06"), illustrating that the additional velocity information provided by spectral line studies is important for addressing the prevalence of unresolved galaxy pairs in low-resolution submillimeter surveys
Empirical Evidence on the Use of Credit Scoring for Predicting Insurance Losses with Psycho-social and Biochemical Explanations
An important development in personal lines of insurance in the United States is the use of credit history data for insurance risk classification to predict losses. This research presents the results of collaboration with industry conducted by a university at the request of its state legislature. The purpose was to see the viability and validity of the use of credit scoring to predict insurance losses given its controversial nature and criticism as redundant of other predictive variables currently used. Working with industry and government, this study analyzed more than 175,000 policyholders’ information for the relationship between credit score and claims. Credit scores were significantly related to incurred losses, evidencing both statistical and practical significance. We investigate whether the revealed relationship between credit score and incurred losses was explainable by overlap with existing underwriting variables or whether the credit score adds new information about losses not contained in existing underwriting variables. The results show that credit scores contain significant information not already incorporated into other traditional rating variables (e.g., age, sex, driving history). We discuss how sensation seeking and self-control theory provide a partial explanation of why credit scoring works (the psycho-social perspective). This article also presents an overview of biological and chemical correlates of risk taking that helps explain why knowing risk-taking behavior in one realm (e.g., risky financial behavior and poor credit history) transits to predicting risk-taking behavior in other realms (e.g., automobile insurance incurred losses). Additional research is needed to advance new nontraditional loss prediction variables from social media consumer information to using information provided by technological advances. The evolving and dynamic nature of the insurance marketplace makes it imperative that professionals continue to evolve predictive variables and for academics to assist with understanding the whys of the relationships through theory development.IC2 Institut
Building Babies - Chapter 16
In contrast to birds, male mammals rarely help to raise the offspring. Of all mammals, only among rodents, carnivores, and primates, males are sometimes intensively engaged in providing infant care (Kleiman and Malcolm 1981). Male caretaking of infants has long been recognized in nonhuman primates (Itani 1959). Given that infant care behavior can have a positive effect on the infant’s development, growth, well-being, or survival, why are male mammals not more frequently involved in “building babies”? We begin the chapter defining a few relevant terms and introducing the theory and hypotheses that have historically addressed the evolution of paternal care. We then review empirical findings on male care among primate taxa, before focusing, in the final section, on our own work on paternal care in South American owl monkeys (Aotus spp.). We conclude the chapter with some suggestions for future studies.Deutsche Forschungsgemeinschaft (HU 1746/2-1)
Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, the National Science Foundation (BCS-0621020), the University of Pennsylvania Research Foundation, the Zoological Society of San Dieg
Recommended from our members
Observation of Excess J/ψ Yield at Very Low Transverse Momenta in Au+Au Collisions at sqrt[s_{NN}]=200 GeV and U+U Collisions at sqrt[s_{NN}]=193 GeV.
We report on the first measurements of J/ψ production at very low transverse momentum (p_{T}<0.2 GeV/c) in hadronic Au+Au collisions at sqrt[s_{NN}]=200 GeV and U+U collisions at sqrt[s_{NN}]=193 GeV. Remarkably, the inferred nuclear modification factor of J/ψ at midrapidity in Au+Au (U+U) collisions reaches about 24 (52) for p_{T}<0.05 GeV/c in the 60%-80% collision centrality class. This noteworthy enhancement cannot be explained by hadronic production accompanied by cold and hot medium effects. In addition, the dN/dt distribution of J/ψ for the very low p_{T} range is presented for the first time. The distribution is consistent with that expected from the Au nucleus and shows a hint of interference. Comparison of the measurements to theoretical calculations of coherent production shows that the excess yield can be described reasonably well and reveals a partial disruption of coherent production in semicentral collisions, perhaps due to the violent hadronic interactions. Incorporating theoretical calculations, the results strongly suggest that the dramatic enhancement of J/ψ yield observed at extremely low p_{T} originates from coherent photon-nucleus interactions. In particular, coherently produced J/ψ's in violent hadronic collisions may provide a novel probe of the quark-gluon plasma
Recommended from our members
Measurement of inclusive J/ψ suppression in Au+Au collisions at sNN=200 GeV through the dimuon channel at STAR
J/ψ suppression has long been considered a sensitive signature of the formation of the Quark-Gluon Plasma (QGP) in relativistic heavy-ion collisions. In this letter, we present the first measurement of inclusive J/ψ production at mid-rapidity through the dimuon decay channel in Au+Au collisions at sNN=200 GeV with the STAR experiment. These measurements became possible after the installation of the Muon Telescope Detector was completed in 2014. The J/ψ yields are measured in a wide transverse momentum (pT) range of 0.15 GeV/c to 12 GeV/c from central to peripheral collisions. They extend the kinematic reach of previous measurements at RHIC with improved precision. In the 0-10% most central collisions, the J/ψ yield is suppressed by a factor of approximately 3 for pT>5 GeV/c relative to that in p+p collisions scaled by the number of binary nucleon-nucleon collisions. The J/ψ nuclear modification factor displays little dependence on pT in all centrality bins. Model calculations can qualitatively describe the data, providing further evidence for the color-screening effect experienced by J/ψ mesons in the QGP
Recommended from our members
Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC
Quark interactions with topological gluon configurations can induce chirality imbalance and local parity violation in quantum chromodynamics. This can lead to electric charge separation along the strong magnetic field in relativistic heavy-ion collisions – the chiral magnetic effect (CME). We report measurements by the STAR collaboration of a CME-sensitive observable in p+Au and d+Au collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations relative to a third particle. We observe strong charge-dependent correlations similar to those measured in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion data
Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments
The subesophageal zone (SEZ) of the Drosophila brain processes mechanosensory and gustatory sensory input from sensilla located on the head, mouth cavity and trunk. Motor output from the SEZ directly controls the movements involved in feeding behavior. In an accompanying paper (Hartenstein et al., 2017), we analyzed the systems of fiber tracts and secondary lineages to establish reliable criteria for defining boundaries between the four neuromeres of the SEZ, as well as discrete longitudinal neuropil domains within each SEZ neuromere. Here we use this anatomical framework to systematically map the sensory projections entering the SEZ throughout development. Our findings show continuity between larval and adult sensory neuropils. Gustatory axons from internal and external taste sensilla of the larva and adult form two closely related sensory projections, (a) the anterior central sensory center located deep in the ventromedial neuropil of the tritocerebrum and mandibular neuromere, and (b) the anterior ventral sensory center (AVSC), occupying a superficial layer within the ventromedial tritocerebrum. Additional, presumed mechanosensory terminal axons entering via the labial nerve define the ventromedial sensory center (VMSC) in the maxilla and labium. Mechanosensory afferents of the massive array of chordotonal organs (Johnston's organ) of the adult antenna project into the centrolateral neuropil column of the anterior SEZ, creating the antenno- mechanosensory and motor center (AMMC). Dendritic projections of dye back-filled motor neurons extend throughout a ventral layer of the SEZ, overlapping widely with the AVSC and VMSC. Our findings elucidate fundamental structural aspects of the developing sensory systems in Drosophila
- …
