52 research outputs found

    Fear of COVID-19 and perceived COVID-19 infectability supplement theory of planned behavior to explain Iranians' intention to get COVID-19 vaccinated

    Get PDF
    One of the most efficient methods to control the high infection rate of the coronavirus disease 2019 (COVID-19) is to have a high coverage of COVID-19 vaccination worldwide. Therefore, it is important to understand individuals’ intention to get COVID-19 vaccinated. The present study applied the Theory of Planned Behavior (TPB) to explain the intention to get COVID-19 vaccinated among a representative sample in Qazvin, Iran. The TPB uses psychological constructs of attitude, subjective norm, and perceived behavioral control to explain an individual’s intention to perform a behavior. Fear and perceived infectability were additionally incorporated into the TPB to explain the intention to get COVID-19 vaccinated. Utilizing multistage stratified cluster sampling, 10,843 participants (4092 males; 37.7%) with a mean age of 35.54 years (SD = 12.00) completed a survey. The survey assessed TPB constructs (including attitude, subjective norm, perceived behavioral control, and intention related to COVID-19 vaccination) together with fear of COVID-19 and perceived COVID-19 infectability. Structural equation modeling (SEM) was performed to examine whether fear of COVID-19, perceived infectability, and the TPB constructs explained individuals’ intention to get COVID-19 vaccinated. The SEM demonstrated satisfactory fit (comparative fit index = 0.970; Tucker-Lewis index = 0.962; root mean square error of approximation = 0.040; standardized root mean square residual = 0.050). Moreover, perceived behavioral control, subjective norm, attitude, and perceived COVID-19 infectability significantly explained individuals’ intention to get COVID-19 vaccinated. Perceived COVID-19 infectability and TPB constructs were all significant mediators in the relationship between fear of COVID-19 and intention to get COVID-19 vaccinated. Incorporating fear of COVID-19 and perceived COVID-19 infectability effectively into the TPB explained Iranians’ intention to get COVID-19 vaccinated. Therefore, Iranians who have a strong belief in Muslim religion may improve their intention to get COVID-19 vaccinated via these constructs

    Bionanomaterial thin film for piezoelectric applications

    No full text
    Wearable and flexible electronics are becoming of recent interest due to expansion of Internet of Things (IOT). Thin film piezoelectric materials have the potential to be used as the development of flexible electronic devices in energy harvesting, sensing and biomedicine. This is mainly be-cause of the inherent ability of piezoelectric materials to convert the mechanical energy to the electrical energy or vice versa. Piezoelectricity in material represents the property of certain crys-talline structure that is capable to developing electricity when pressure is applied. However, con-ventional piezoelectric materials such as PZT (lead zirconate titanate) and PVDF (poly(vinylidene flouride)) are expensive, non-renewable, non-biodegradable and lack of biocom-patibility due to the cytotoxicity nature of lead-based material. Piezoelectric material from natu-ral polymers of biomaterial may provide the solutions for the drawbacks of piezoceramics and piezoelectric polymers. This review emphasis is on the piezoelectricity of various bionanomaterials (cellulose, chitin, chitosan, collagen, amino acid and peptide). The various methods used to measure piezoelectricity of biomaterials is also discussed. This study shows that biomaterials have the potential to be used as piezoelectric nanogenerators in energy harvesting, sensors and biosensors, as well as in cell and tissue engineering, wound healing and drug delivery
    corecore