82 research outputs found

    Experimental biogeography: the role of environmental gradients in high geographic diversity in Cape Proteaceae

    Get PDF
    One of the fundamental dimensions of biodiversity is the rate of species turnover across geographic distance. The Cape Floristic Region of South Africa has exceptionally high geographic species turnover, much of which is associated with groups of closely related species with mostly or completely non-overlapping distributions. A basic unresolved question about biodiversity in this global hotspot is the relative importance of ecological gradients in generating and maintaining high geographic turnover in the region. We used reciprocal transplant experiments to test the extent to which abiotic environmental factors may limit the distributions of a group of closely related species in the genus Protea (Proteaceae), and thus elevate species turnover in this diverse, iconic family. We tested whether these species have a “home site advantage” in demographic rates (germination, growth, mortality), and also parameterized stage-structured demographic models for the species. Two of the three native species were predicted to have a demographic advantage at their home sites. The models also predicted, however, that species could maintain positive population growth rates at sites beyond their current distribution limits. Thus the experiment suggests that abiotic limitation under current environmental conditions does not fully explain the observed distribution limits or resulting biogeographic pattern. One potentially important mechanism is dispersal limitation, which is consistent with estimates based on genetic data and mechanistic dispersal models, though other mechanisms including competition may also play a role

    Esterase-D and chromosome patterns in Central Amazon piranha (Serrasalmus rhombeus Linnaeus, 1766) from Lake CatalĂŁo

    Get PDF
    This study presents additional genetic data on piranha (Serrasalmus rhombeus Linnaeus, 1766) complex previously diagnosed due to the presence of distinct cytotypes 2n = 58 and 2n = 60. Three esterase-D enzyme loci (Est-D1, Est-D2 and Est-D3) were examined and complemented with chromosomal data from 66 piranha specimens collected from Lake Catalão. For all specimens the Est-D1 and Est-D2 loci were monomorphic. In contrast, the Est-D3 locus was polymorphic with genotypes and alleles being differentially distributed in the previously described cytotypes and served as the basis for detecting a new cytotype (2n = 60 B). In cytotype 2n = 58 the Est-D3 locus was also polymorphic and presented Mendelian allelic segregation with four genotypes (Est-D311, Est-D312, Est-D322 and Est-D333) out of six theoretically possible genotypes, presumably encoded by alleles Est-D31 (frequency = 0.237), EsT-D32 (0.710) and Est-D33 (0.053). A Chi-squared (χ2) test for Hardy-Weinberg equilibrium was applied to the Est-D3locus and revealed a genetic unbalance in cytotype 2n = 58, indicating the probable existence in the surveyed area of different stocks for that karyotypic structure. A silent null allele (Est-D30 with a high frequency (0.959) occurred exclusively in the 2n = 60 cytotype. On the other hand, the new cytotype 2n = 60 B described here for the first time was monomorphic for the presumably fixed Est-D33 allele. The data as a whole should contribute to the better understanding the rhombeus complex taxonomic status definitíon in the Central Amazon. © 2006 Sociedade Brasileira de Genética

    Match-Play and Performance Test Responses of Soccer Goalkeepers: A Review of Current Literature.

    Get PDF
    Goalkeepers are typically the last defensive line for soccer teams aiming to minimise goals being conceded, with match rules permitting ball handling within a specific area. Goalkeepers are also involved in initiating some offensive plays, and typically remain in close proximity to the goal line while covering ~ 50% of the match distances of outfield players; hence, the competitive and training demands of goalkeepers are unique to their specialised position. Indeed, isolated performance tests differentiate goalkeepers from outfield players in multiple variables. With a view to informing future research, this review summarised currently available literature reporting goalkeeper responses to: (1) match play (movement and skilled/technical demands) and (2) isolated performance assessments (strength, power, speed, aerobic capacity, joint range of motion). Literature searching and screening processes yielded 26 eligible records and highlighted that goalkeepers covered ~ 4-6 km on match day whilst spending ~ 98% of time at low-movement intensities. The most decisive moments are the 2-10 saves·match-1 performed, which often involve explosive actions (e.g. dives, jumps). Whilst no between-half performance decrements have been observed in professional goalkeepers, possible transient changes over shorter match epochs remain unclear. Isolated performance tests confirm divergent profiles between goalkeepers and outfield players (i.e. superior jump performance, reduced [Formula: see text]2max values, slower sprint times), and the training of soccer goalkeepers is typically completed separately from outfield positions with a focus primarily on technical or explosive drills performed within confined spaces. Additional work is needed to examine the physiological responses to goalkeeper-specific training and match activities to determine the efficacy of current preparatory strategies

    Fynbos Biome

    No full text
    Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] en Dierkund

    In the right place at the right time: Why some introduced Proteaceae spread as some sites but fail at many others

    No full text
    NatuurwetenskappePlant- en DierkundePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Potential impacts of future land use and climate change on the Red List status of the Proteaceae in the Cape Floristic Region, South Africa

    Get PDF
    Using spatial predictions of future threats to biodiversity, we assessed for the first time the relative potential impacts of future land use and climate change on the threat status of plant species. We thus estimated how many taxa could be affected by future threats that are usually not included in current IUCN Red List assessments. Here, we computed the Red List status including future threats of 227 Proteaceae taxa endemic to the Cape Floristic Region, South Africa, and compared this with their Red List status excluding future threats. We developed eight different land use and climate change scenarios for the year 2020, providing a range of best- to worst-case scenarios. Four scenarios include only the effects of future land use change, while the other four also include the impacts of projected anthropogenic climate change (HadCM2 IS92a GGa), using niche-based models. Up to a third of the 227 Proteaceae taxa are uplisted (become more threatened) by up to three threat categories if future threats as predicted for 2020 are included, and the proportion of threatened Proteaceae taxa rises on average by 9% (range 2-16%), depending on the scenario. With increasing severity of the scenarios, the proportion of Critically Endangered taxa increases from about 1% to 7% and almost 2% of the 227 Proteaceae taxa become Extinct because of climate change. Overall, climate change has the most severe effects on the Proteaceae, but land use change also severely affects some taxa. Most of the threatened taxa occur in low-lying coastal areas, but the proportion of threatened taxa changes considerably in inland mountain areas if future threats are included. Our approach gives important insights into how, where and when future threats could affect species persistence and can in a sense be seen as a test of the value of planned interventions for conservation.Ctr Invas Bio
    • …
    corecore