100 research outputs found

    Abnormal oxygen homeostasis in the nucleus tractus solitarius of the spontaneously hypertensive rat

    Get PDF
    The effects of arterial hypertension on cerebral blood flow remain poorly understood. Hemodynamic responses within the somatosensory cortex have been shown to be impaired in the spontaneously hypertensive rat (SHR) model. However, it is unknown whether arterial hypertension affects oxygen homeostasis in vital brainstem areas that control cardiovascular reflexes. In this study, we assessed vagus nerve stimulation-induced changes in local tissue PO2 (Pt O2 ) in the caudal nucleus tractus solitarius (cNTS) of SHRs and normotensive Wistar rats. Pt O2 measurements were performed using a novel application of fast cyclic voltammetry, which allows higher temporal resolution of O2 changes than traditional optical fluorescence techniques. Electrical stimulation of the central-cut end of the vagus nerve (ESVN) caused profound arterial blood pressure decreases along with biphasic Pt O2 changes in the cNTS, characterised by a rapid decrease in Pt O2 ("initial dip") followed by a post-stimulus overshoot above baseline. The initial dip was found to be significantly smaller in SHRs compared to normotensive Wistar rats even after ganglionic blockade. Post-ESVN overshoot was similar in both groups but was reduced in Wistar rats after ganglionic blockade. In conclusion, neural activity-dependent changes in tissue oxygen in brainstem cardiovascular autonomic centres are significantly impaired in animals with arterial hypertension

    UK utility data integration: overcoming schematic heterogeneity

    Get PDF
    In this paper we discuss syntactic, semantic and schematic issues which inhibit the integration of utility data in the UK. We then focus on the techniques employed within the VISTA project to overcome schematic heterogeneity. A Global Schema based architecture is employed. Although automated approaches to Global Schema definition were attempted the heterogeneities of the sector were too great. A manual approach to Global Schema definition was employed. The techniques used to define and subsequently map source utility data models to this schema are discussed in detail. In order to ensure a coherent integrated model, sub and cross domain validation issues are then highlighted. Finally the proposed framework and data flow for schematic integration is introduced

    Astrocytes modulate baroreflex sensitivity at the level of the nucleus of the solitary tract

    Get PDF
    Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In experiments conducted in male laboratory rats we show that astrocytes of the nucleus tractus solitarii (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p<0.001). The effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP considered the principle gliotransmitter and is released by vesicular mechanisms affected by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, activation P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p=0.031), while blockade of P2Y1 receptors increased baroreflex gain by 57% (p=0.018). These results suggest that glutamate and 5-HT released by NTS afferent terminals trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in the brain information processing

    Raised arterial blood pressure in neurokinin-1 receptor-deficient mice (NK1R−/−): evidence for a neural rather than a vascular mechanism

    Get PDF
    NEW FINDINGS: What is the central question of this study? Does genetic ablation of neurokinin-1 receptors alter arterial blood pressure? What is the main finding and its importance? NK1R(-/-) mice have increased mean arterial blood pressure, but without a concomitant change in vascular reactivity. This finding suggests that neurokinin-1 receptors play a role in the neural regulation of blood pressure. Mice with functional ablation of the neurokinin-1 receptor gene, Tacr1, (NK1R(-/-) ) express behavioural abnormalities equivalent to those seen in attention deficit hyperactivity disorder (ADHD). An established model of ADHD is the spontaneously hypertensive rat, which exhibits high blood pressure owing to increased central sympathetic drive. In light of the evidence that the neurokinin-1 receptor (NK1R) also influences cardiovascular haemodynamics, we have investigated whether NK1R(-/-) mice exhibit raised blood pressure. Cardiovascular parameters were recorded for 24 h in conscious mice using radiotelemetry. Vascular function was assessed in mesenteric resistance arteries by wire myography. The NK1R(-/-) mice exhibited a higher blood pressure than wild-type animals throughout the 24 h period. Heart rate and locomotor activity in NK1R(-/-) mice were higher than in wild-type mice during the night period (active phase), consistent with an ADHD-like phenotype, but not during the day. Mesenteric and renal arteries from NK1R(-/-) mice exhibited normal vascular function; the responses to vasoconstrictors (U46619 and phenylephrine) and the endothelium-dependent vasodilator, acetylcholine, were not altered in these animals, suggesting that the NK1R does not regulate vascular tone. Analysis of heart rate variability revealed a higher low-frequency to high-frequency ratio in NK1R(-/-) mice, indicative of increased cardiac sympathetic activity. We propose that the raised blood pressure in NK1R(-/-) mice could be due to a neural mechanism rather than a change in vascular reactivity. Further studies are required to understand this mechanism and to establish whether a subgroup of ADHD patients with polymorphism of the equivalent (TACR1) gene are affected in a similar way

    Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review

    Get PDF
    Background: Urinary tract infection (UTI) is one of the most common sources of infection in children under five. Prompt diagnosis and treatment is important to reduce the risk of renal scarring. Rapid, cost-effective, methods of UTI diagnosis are required as an alternative to culture. Methods: We conducted a systematic review to determine the diagnostic accuracy of rapid tests for detecting UTI in children under five years of age. Results: The evidence supports the use of dipstick positive for both leukocyte esterase and nitrite (pooled LR+ = 28.2, 95% CI: 17.3, 46.0) or microscopy positive for both pyuria and bacteriuria (pooled LR+ = 37.0, 95% CI: 11.0, 125.9) to rule in UTI. Similarly dipstick negative for both LE and nitrite (Pooled LR- = 0.20, 95% CI: 0.16, 0.26) or microscopy negative for both pyuria and bacteriuria (Pooled LR- = 0.11, 95% CI: 0.05, 0.23) can be used to rule out UTI. A test for glucose showed promise in potty-trained children. However, all studies were over 30 years old. Further evaluation of this test may be useful. Conclusion: Dipstick negative for both LE and nitrite or microscopic analysis negative for both pyuria and bacteriuria of a clean voided urine, bag, or nappy/pad specimen may reasonably be used to rule out UTI. These patients can then reasonably be excluded from further investigation, without the need for confirmatory culture. Similarly, combinations of positive tests could be used to rule in UTI, and trigger further investigation

    How does study quality affect the results of a diagnostic meta-analysis?

    Get PDF
    Background: The use of systematic literature review to inform evidence based practice in diagnostics is rapidly expanding. Although the primary diagnostic literature is extensive, studies are often of low methodological quality or poorly reported. There has been no rigorously evaluated, evidence based tool to assess the methodological quality of diagnostic studies. The primary objective of this study was to determine the extent to which variations in the quality of primary studies impact the results of a diagnostic meta-analysis and whether this differs with diagnostic test type. A secondary objective was to contribute to the evaluation of QUADAS, an evidence-based tool for the assessment of quality in diagnostic accuracy studies. Methods: This study was conducted as part of large systematic review of tests used in the diagnosis and further investigation of urinary tract infection (UTI) in children. All studies included in this review were assessed using QUADAS, an evidence-based tool for the assessment of quality in systematic reviews of diagnostic accuracy studies. The impact of individual components of QUADAS on a summary measure of diagnostic accuracy was investigated using regression analysis. The review divided the diagnosis and further investigation of UTI into the following three clinical stages: diagnosis of UTI, localisation of infection, and further investigation of the UTI. Each stage used different types of diagnostic test, which were considered to involve different quality concerns. Results: Many of the studies included in our review were poorly reported. The proportion of QUADAS items fulfilled was similar for studies in different sections of the review. However, as might be expected, the individual items fulfilled differed between the three clinical stages. Regression analysis found that different items showed a strong association with test performance for the different tests evaluated. These differences were observed both within and between the three clinical stages assessed by the review. The results of regression analyses were also affected by whether or not a weighting (by sample size) was applied. Our analysis was severely limited by the completeness of reporting and the differences between the index tests evaluated and the reference standards used to confirm diagnoses in the primary studies. Few tests were evaluated by sufficient studies to allow meaningful use of meta-analytic pooling and investigation of heterogeneity. This meant that further analysis to investigate heterogeneity could only be undertaken using a subset of studies, and that the findings are open to various interpretations. Conclusion: Further work is needed to investigate the influence of methodological quality on the results of diagnostic meta-analyses. Large data sets of well-reported primary studies are needed to address this question. Without significant improvements in the completeness of reporting of primary studies, progress in this area will be limited

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    HSP60 as a Target of Anti-Ergotypic Regulatory T Cells

    Get PDF
    The 60 kDa heat shock protein (HSP60) has been reported to influence T-cell responses in two ways: as a ligand of toll-like receptor 2 signalling and as an antigen. Here we describe a new mechanism of T-cell immuno-regulation focused on HSP60: HSP60 is up-regulated and presented by activated T cells (HSP60 is an ergotope) to regulatory (anti-ergotypic) T cells. Presentation of HSP60 by activated T cells was found to be MHC-restricted and dependent on accessory molecules - CD28, CD80 and CD86. Anti-ergotypic T cells responded to T-cell HSP60 by proliferation and secreted IFNγ and TGFβ1. In vitro, the anti-ergotypic T cells inhibited IFNγ production by their activated T-cell targets. In vivo, adoptive transfer of an anti-ergotypic HSP60-specific T-cell line led to decreased secretion of IFNγ by arthritogenic T cells and ameliorated adjuvant arthritis (AA). Thus, the presentation of HSP60 by activated T cells turns them into targets for anti-ergotypic regulatory T cells specific for HSP60. However, the direct interaction between the anti-ergotypic T regulators (anti-HSP60) and the activated T cells also down-regulated the regulators. Thus, by functioning as an ergotope, HSP60 can control both the effector T cells and the regulatory HSP60-specific T cells that control them

    Sequence-Based Analysis Uncovers an Abundance of Non-Coding RNA in the Total Transcriptome of Mycobacterium tuberculosis

    Get PDF
    RNA sequencing provides a new perspective on the genome of Mycobacterium tuberculosis by revealing an extensive presence of non-coding RNA, including long 5’ and 3’ untranslated regions, antisense transcripts, and intergenic small RNA (sRNA) molecules. More than a quarter of all sequence reads mapping outside of ribosomal RNA genes represent non-coding RNA, and the density of reads mapping to intergenic regions was more than two-fold higher than that mapping to annotated coding sequences. Selected sRNAs were found at increased abundance in stationary phase cultures and accumulated to remarkably high levels in the lungs of chronically infected mice, indicating a potential contribution to pathogenesis. The ability of tubercle bacilli to adapt to changing environments within the host is critical to their ability to cause disease and to persist during drug treatment; it is likely that novel post-transcriptional regulatory networks will play an important role in these adaptive responses

    ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development

    Get PDF
    Cell death in bacteria can be triggered by activation of self-inflicted molecular mechanisms. Pathogenic bacteria often make use of suicide mechanisms in which the death of individual cells benefits survival of the population. Important elements for programmed cell death in bacteria are proteinaceous toxin–antitoxin systems. While the toxin generally resides dormant in the bacterial cytosol in complex with its antitoxin, conditions such as impaired de novo synthesis of the antitoxin or nutritional stress lead to antitoxin degradation and toxin activation. A widespread toxin–antitoxin family consists of the ε/ζ systems, which are distributed over plasmids and chromosomes of various pathogenic bacteria. In its inactive state, the bacteriotoxic ζ toxin protein is inhibited by its cognate antitoxin ε. Upon degradation of ε, the ζ toxin is released allowing this enzyme to poison bacterial cell wall synthesis, which eventually triggers autolysis. ε/ζ systems ensure stable plasmid inheritance by inducing death in plasmid-deprived offspring cells. In contrast, chromosomally encoded ε/ζ systems were reported to contribute to virulence of pathogenic bacteria, possibly by inducing autolysis in individual cells under stressful conditions. The capability of toxin–antitoxin systems to kill bacteria has made them potential targets for new therapeutic compounds. Toxin activation could be hijacked to induce suicide of bacteria. Likewise, the unique mechanism of ζ toxins could serve as template for new drugs. Contrarily, inhibition of virulence-associated ζ toxins might attenuate infections. Here we provide an overview of ε/ζ toxin–antitoxin family and its potential role in the development of new therapeutic approaches in microbial defense
    corecore