103 research outputs found

    Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair

    Get PDF
    RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation

    Triglyceride/HDL ratio as a screening tool for predicting success at reducing anti-diabetic medications following weight loss.

    Get PDF
    PMC3712020BACKGROUND AND OBJECTIVES: Intentional weight loss, by reducing insulin resistance, results in both better glycemic control and decreased need for anti-diabetic medications. However, not everyone who is successful with weight loss is able to reduce anti-diabetic medication use. In this retrospective cohort study, we assessed the predictive accuracy of baseline triglyceride (TGL)/HDL ratio, a marker of insulin resistance, to screen patients for success in reducing anti-diabetic medication use with weight loss. METHODS: Case records of 121 overweight and obese attendees at two outpatient weight management centers were analyzed. The weight loss intervention consisted of a calorie-restricted diet (~1000Kcal/day deficit), a behavior modification plan, and a plan for increasing physical activity. RESULTS: Mean period of follow-up was 12.5 ± 3.5 months. By study exit, mean weight loss and mean HbA1c% reduction were 15.4 ± 5.5 kgs and 0.5 ± 0.2% respectively. 81 (67%) in the study cohort achieved at least 1 dose reduction of any anti-diabetic medication. Tests for predictive accuracy of baseline TGL/HDL ratio ≤ 3 to determine success with dose reductions of anti-diabetic medications showed a sensitivity, specificity, positive predictive value, negative predictive value, area under the curve, likelihood ratio (LR) + and LR-of 81, 83, 90, 70, 78, 4.8 and 0.2, respectively. Reproducibility of TGL/HDL ratio was acceptable. CONCLUSION: TGL/HDL ratio shows promise as an effective screening tool to determine success with dose reductions of anti-diabetic medications. The results of our study may inform the conduct of a systematic review using data from prior weight loss trials.JH Libraries Open Access Fun

    Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis

    Full text link
    All rights reserved. Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control, for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses, however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniquesThis work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Rede Nanobiotec/Brasil-Universidade Federal de Uberlândia/CAPES, PRONEX-FAPEMIG (APQ-01019-09), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC and LRG are recipients of the grant from CNPq. MACF is the recipient of grants from FAPEMIG/CAPE

    Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes

    Get PDF
    No embargoInteractions between species are influenced by different ecological mechanisms, such as morphological matching, phenological overlap and species abundances. How these mechanisms explain interaction frequencies across environmental gradients remains poorly understood. Consequently, we also know little about the mechanisms that drive the geographical patterns in network structure, such as complementary specialization and modularity. Here, we use data on morphologies, phenologies and abundances to explain interaction frequencies between hummingbirds and plants at a large geographical scale. For 24 quantitative networks sampled throughout the Americas, we found that the tendency of species to interact with morphologically matching partners contributed to specialized and modular network structures. Morphological matching best explained interaction frequencies in networks found closer to the equator and in areas with low-temperature seasonality. When comparing the three ecological mechanisms within networks, we found that both morphological matching and phenological overlap generally outperformed abundances in the explanation of interaction frequencies. Together, these findings provide insights into the ecological mechanisms that underlie geographical patterns in resource specialization. Notably, our results highlight morphological constraints on interactions as a potential explanation for increasing resource specialization towards lower latitudes.</jats:p

    Global urban environmental change drives adaptation in white clover.

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Advances in the Household Archaeology of Highland Mesoamerica

    Full text link
    corecore