11 research outputs found

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe

    Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Aquaponics: alternative types and approaches

    Get PDF
    Whilst aquaponics may be considered in the mid-stage of development, there are a number of allied, novel methods of food production that are aligning alongside aquaponics and also which can be merged with aquaponics to deliver food efficiently and productively. These technologies include algaeponics, aeroponics, aeroaquaponics, maraponics, haloponics, biofloc technology and vertical aquaponics. Although some of these systems have undergone many years of trials and research, in most cases, much more scientific research is required to understand intrinsic processes within the systems, efficiency, design aspects, etc., apart from the capacity, capabilities and benefits of conjoining these systems with aquaponics

    Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation

    No full text
    Recirculating aquaculture systems, as part of aquaponic units, are effective in producing aquatic animals with a minimal water consumption through effective treatment stages. Nevertheless, the concentrated sludge produced after the solid filtration stage, comprising organic matter and valuable nutrients, is most often discarded. One of the latest developments in aquaponic technology aims to reduce this potential negative environmental impact and to increase the nutrient recycling by treating the sludge on-site. For this purpose, microbial aerobic and anaerobic treatments, dealt with either individually or in a combined approach, provide very promising opportunities to simultaneously reduce the organic waste as well as to recover valuable nutrients such as phosphorus. Anaerobic sludge treatments additionally offer the possibility of energy production since a by-product of this process is biogas, i.e. mainly methane. By applying these additional treatment steps in aquaponic units, the water and nutrient recycling efficiency is improved and the dependency on external fertiliser can be reduced, thereby enhancing the sustainability of the system in terms of resource utilisation. Overall, this can pave the way for the economic improvement of aquaponic systems because costs for waste disposal and fertiliser acquisition are decreased

    Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems

    No full text
    corecore