113 research outputs found

    CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium

    Get PDF
    Background: During neuroinflammation many chemokines alter the function of the blood-brain barrier (BBB) that regulates the entry of macromolecules and immune cells into the brain. As the milieu of the brain is altered, biochemical and structural changes contribute to the pathogenesis of neuroinflammation and may impact on neurogenesis. The chemokine CCL4, previously known as MIP-1β, is upregulated in a wide variety of central nervous system disorders, including multiple sclerosis, where it is thought to play a key role in the neuroinflammatory process. However, the effect of CCL4 on BBB endothelial cells (ECs) is unknown. Materials and methods: Expression and distribution of CCR5, phosphorylated p38, F-actin, zonula occludens-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) were analysed in the human BBB EC line hCMEC/D3 by Western blot and/or immunofluorescence in the presence and absence of CCL4. Barrier modulation in response to CCL4 using hCMEC/D3 monolayers was assessed by measuring molecular flux of 70 ​kDa RITC-dextran and transendothelial lymphocyte migration. Permeability changes in response to CCL4 in vivo were measured by an occlusion technique in pial microvessels of Wistar rats and by fluorescein angiography in mouse retinae. Results: CCR5, the receptor for CCL4, was expressed in hCMEC/D3 cells. CCL4 stimulation led to phosphorylation of p38 and the formation of actin stress fibres, both indicative of intracellular chemokine signalling. The distribution of junctional proteins was also altered in response to CCL4: junctional ZO-1 was reduced by circa 60% within 60 ​min. In addition, surface VE-cadherin was redistributed through internalisation. Consistent with these changes, CCL4 induced hyperpermeability in vitro and in vivo and increased transmigration of lymphocytes across monolayers of hCMEC/D3 cells. Conclusion: These results show that CCL4 can modify BBB function and may contribute to disease pathogenesis

    CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium

    Get PDF
    Background: During neuroinflammation many chemokines alter the function of the blood-brain barrier (BBB) that regulates the entry of macromolecules and immune cells into the brain. As the milieu of the brain is altered, biochemical and structural changes contribute to the pathogenesis of neuroinflammation and may impact on neurogenesis. The chemokine CCL4, previously known as MIP-1β, is upregulated in a wide variety of central nervous system disorders, including multiple sclerosis, where it is thought to play a key role in the neuroinflammatory process. However, the effect of CCL4 on BBB endothelial cells (ECs) is unknown. Materials and methods: Expression and distribution of CCR5, phosphorylated p38, F-actin, zonula occludens-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) were analysed in the human BBB EC line hCMEC/D3 by Western blot and/or immunofluorescence in the presence and absence of CCL4. Barrier modulation in response to CCL4 using hCMEC/D3 monolayers was assessed by measuring molecular flux of 70 ​kDa RITC-dextran and transendothelial lymphocyte migration. Permeability changes in response to CCL4 in vivo were measured by an occlusion technique in pial microvessels of Wistar rats and by fluorescein angiography in mouse retinae. Results: CCR5, the receptor for CCL4, was expressed in hCMEC/D3 cells. CCL4 stimulation led to phosphorylation of p38 and the formation of actin stress fibres, both indicative of intracellular chemokine signalling. The distribution of junctional proteins was also altered in response to CCL4: junctional ZO-1 was reduced by circa 60% within 60 ​min. In addition, surface VE-cadherin was redistributed through internalisation. Consistent with these changes, CCL4 induced hyperpermeability in vitro and in vivo and increased transmigration of lymphocytes across monolayers of hCMEC/D3 cells. Conclusion: These results show that CCL4 can modify BBB function and may contribute to disease pathogenesis

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Partnership and Capacity Building of Local Governance

    Get PDF
    Partnership is about sharing of power, responsibility and achievements. According to the World Bank Public Private Partnership (PPP) promoting group, ―partnership refer to informal and shortterm engagements of non-governmental organizations, the private sector and/or government agencies that join forces for a shared objective; to more formal, but still short-term private sector engagements for the provision of specific services, for example, annual outsourcing arrangements for janitorial services for a school or operations of the school cafeteria; to more complex contractual arrangements, such as build, operate, transfer regimes, where the private sector takes on considerable risk and remains engaged long term; or to full privatizations‖ (World Bank Group 2014, 29).© Springer Nature Switzerland AG 2020. This is a post-peer-review, pre-copyedit version of an article published in Partnerships for the Goals. Encyclopedia of the UN Sustainable Development Goals. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-71067-9_21-1.fi=vertaisarvioitu|en=peerReviewed

    Beak and feather disease virus in wild and captive parrots: an analysis of geographic and taxonomic distribution and methodological trends

    Get PDF
    Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia

    The Cysteine Protease α-Clostripain is Not Essential for the Pathogenesis of Clostridium perfringens-Mediated Myonecrosis

    Get PDF
    Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different extracellular toxins and enzymes, including the cysteine protease α-clostripain. Mutation of the α-clostripain structural gene, ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of α-clostripain in disease pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology, constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of α-clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse myonecrosis model. The results showed that although α-clostripain was the major extracellular protease, mutation of the ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility that this extracellular enzyme may still have a role in the early stages of the disease process

    How to do a grounded theory study: a worked example of a study of dental practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qualitative methodologies are increasingly popular in medical research. Grounded theory is the methodology most-often cited by authors of qualitative studies in medicine, but it has been suggested that many 'grounded theory' studies are not concordant with the methodology. In this paper we provide a worked example of a grounded theory project. Our aim is to provide a model for practice, to connect medical researchers with a useful methodology, and to increase the quality of 'grounded theory' research published in the medical literature.</p> <p>Methods</p> <p>We documented a worked example of using grounded theory methodology in practice.</p> <p>Results</p> <p>We describe our sampling, data collection, data analysis and interpretation. We explain how these steps were consistent with grounded theory methodology, and show how they related to one another. Grounded theory methodology assisted us to develop a detailed model of the process of adapting preventive protocols into dental practice, and to analyse variation in this process in different dental practices.</p> <p>Conclusions</p> <p>By employing grounded theory methodology rigorously, medical researchers can better design and justify their methods, and produce high-quality findings that will be more useful to patients, professionals and the research community.</p

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation

    Developments in the Ni–Nb–Zr amorphous alloy membranes

    Get PDF
    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD *31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100-xZrx alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane
    • …
    corecore