17 research outputs found

    Co-Morbidity between Early-Onset Leukemia and Type 1 Diabetes – Suggestive of a Shared Viral Etiology?

    Get PDF
    Background: Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are common early-onset malignancies. Their causes are largely unknown but infectious etiology has been implicated. Type 1 diabetes (T1D) is an autoimmune disease for which infectious triggers of disease onset have been sought and increasing pointing to enteroviruses. Based on our previous results on co-morbidity between leukemia and T1D, we updated the Swedish dataset and focused on early onset leukemias in patients who had been hospitalized for T1D, comparing to those not hospitalized for T1D. Methods and Findings: Standardized incidence ratios (SIRs) were calculated for leukemia in 24,052 patients hospitalized for T1D covering years 1964 through 2008. T1D patients were included if hospitalized before age 21 years. Practically all Swedish children and adolescents with T1D are hospitalized at the start of insulin treatment. SIR for ALL was 8.30 (N = 18, 95% confidence interval 4.91-13.14) when diagnosed at age 10 to 20 years after hospitalization for T1D and it was 3.51 (13, 1.86-6.02) before hospitalization for T1D. The SIR for ALL was 19.85 (N = 33, 13.74-27.76) and that for AML was 25.28 (8, 10.80-50.06) when the leukemias were diagnosed within the year of T1D hospitalization. The SIRs increased to 38.97 (26, 25.43-57.18) and 40.11 (8, 17.13-79.42) when T1D was diagnosed between ages 10 to 20 years. No consistent time-dependent changes were found in leukemia risk. Conclusion: A shared infectious etiology could be a plausible explanation to the observed co-morbidity. Other possible contributing factors could be insulin therapy or T1D related metabolic disturbances

    Supply Chain Intelligence

    Get PDF
    This chapter provides on overall picture of business intelligence (BI) and supply chain analytics (SCA) as a means to support supply chain management (SCM) and decision-making. Based on the literature review, we clarify the needs of BI and performance measurement in the SCM sphere, and discuss its potential to enhance decision-making in strategic, tactical and operational levels. We also make a closer look in to SCA in different areas and functions of SCM. Our findings indicate that the main challenge for harnessing the full potential of SCA is the lack of holistic and integrated BI approaches that originates from the fact that each functional area is using its own IT applications without necessary integration in to the company’s overall BI system. Following this examination, we construct a holistic framework that illustrates how an integrated, managerially planned BI system can be developed. Finally, we discuss the main competency requirements, as well as the challenges still prohibiting the great majority of firms from building smart and comprehensive BI systems for SCM.fi=vertaisarvioitu|en=peerReviewed

    Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers

    Get PDF
    Contains fulltext : 118733.pdf (publisher's version ) (Open Access)Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative measurements of N-glycosylation using ultra-performance liquid chromatography (UPLC) in 2,247 individuals from four European discovery populations. In parallel, we measured IgG N-glycans using MALDI-TOF mass spectrometry (MS) in a replication cohort of 1,848 Europeans. Meta-analysis of genome-wide association study (GWAS) results identified 9 genome-wide significant loci (P<2.27 x 10(-9)) in the discovery analysis and two of the same loci (B4GALT1 and MGAT3) in the replication cohort. Four loci contained genes encoding glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3), while the remaining 5 contained genes that have not been previously implicated in protein glycosylation (IKZF1, IL6ST-ANKRD55, ABCF2-SMARCD3, SUV420H1, and SMARCB1-DERL3). However, most of them have been strongly associated with autoimmune and inflammatory conditions (e.g., systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis, Crohn's disease, diabetes type 1, multiple sclerosis, Graves' disease, celiac disease, nodular sclerosis) and/or haematological cancers (acute lymphoblastic leukaemia, Hodgkin lymphoma, and multiple myeloma). Follow-up functional experiments in haplodeficient Ikzf1 knock-out mice showed the same general pattern of changes in IgG glycosylation as identified in the meta-analysis. As IKZF1 was associated with multiple IgG N-glycan traits, we explored biomarker potential of affected N-glycans in 101 cases with SLE and 183 matched controls and demonstrated substantial discriminative power in a ROC-curve analysis (area under the curve = 0.842). Our study shows that it is possible to identify new loci that control glycosylation of a single plasma protein using GWAS. The results may also provide an explanation for the reported pleiotropy and antagonistic effects of loci involved in autoimmune diseases and haematological cancer

    Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity

    No full text
    AbstractDespite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth’s environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment.</jats:p
    corecore