390 research outputs found

    Fractionation and determination of total antioxidant capacity, total phenolic and total flavonoids contents of aqueous, ethanol and n-hexane extracts of Vitex doniana leaves

    Get PDF
    As a result of normal metabolic processes, the human body produces reactive oxygen species capable of oxidizing biomolecules that can damage DNA, cells and also contribute to the development of chronic diseases. The process can be attenuated or perhaps reversed by herbs and diets containing components that can scavenge reactive oxygen species. In this study, the total antioxidant capacity (TAC), total polyphenolic content (TPC) and total flavonoids content (TFC) of aqueous, ethanol, n-Hexane extract as well as ethanol extract fractions of Vitex doniana leaves were determined. Ethanol extract showed the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (69.01±1.13) followed by aqueous extract (66.14±1.12) and n-hexane extract (50.05±2.11). The total flavonoids content is in the order; aqueous (304±4.14) > ethanol (276 ±4.69) > n-Hexane (88±3.45). Hence, the total phenolic content is in a similar order as that of total antioxidant capacity. Chloroform : ethyl acetate fraction has the highest antioxidant capacity (165mg/ml). methanol : H2O fraction (76mg/ml) and 100% methanol (76mg/ml). Similarly, the total flavonoids content is in the order of fractions; 1>6>4>13>12>2 and others. Total phenolics were in the order of fractions; 1>5>4>12>7>2. There was a strong relationship (R2 = 0.77) between total antioxidant activity and total flavonoid contents and (R2 = 0.6517) for total phenolic content of the fractions. The present study demonstrated that V. doniana leaves extracts contain high amounts of flavonoids and phenolic compounds so that these compounds are efficient free radical scavengers.Keywords: 1,1-Diphenyl-2-picrylhydrazyl (DPPH), polyphenols, flavonoids, Vitex donianaAfrican Journal of Biotechnology, Vol. 13(5), pp. 693-698, 29 January, 201

    Salvage Fractionated Stereotactic Re-irradiation (FSRT) for Patients with Recurrent High Grade Gliomas Progressed after Bevacizumab Treatment

    Get PDF
    Purpose/Objectives: Bevacizumab failure is a major clinical problem in the manage- ment of high grade gliomas (HGG), with a median overall survival of less than 4 months (m). This study evaluated the efficacy of fractionated stereotactic re-irradiation (FSRT) for patients with HGG after progression on Bevacizumab. Materials/Methods: Retrospective review was conducted of patients treated with FSRT after progression on bevacizumab. A total of 36 patients were identified. FSRT was most commonly delivered in 3.5 Gy fractions to a total dose of 35 Gy. Survival from initial diagnosis, as well as from recurrence and re-irradiation, were utilized as study endpoints. Univariate and multivariate analysis was performed. Results: Among the 36 patients, 31 patients had recurrent glioblastoma, and 5 patients had recurrent anaplastic astrocytoma. The median time from initial bevacizumab treatment to FSRT was 8.5 m (range 2.3 – 32.0 m). The median plan target volume for FSRT was 27.5 cc (range 1.95 – 165 cc). With a median follow up of 20.4 m, the overall survival of the patients since initial diagnosis was also 24.9 m. The median overall survival after initiation of bevacizumab was 13.4 months. The median overall survival from FSRT was 4.8 m. FSRT treatment was well tolerated with no Grade \u3e3 toxicity. Conclusions: Favorable outcomes were observed in patients with recurrent HGG who received salvage FSRT after bevacizumab failure. The treatment was well tolerated. Prospective study is warranted to further evaluate the efficacy of salvage FSRT for selected patients with recurrent HGG amenable to FSRT, who had failed bevacizumab treatment

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces

    Get PDF
    A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken. This potential rectification effect was shown to be very weak due to the fact that the kinetic energy is much higher than the energies associated with symmetry breaking, producing weak perturbations. Here we demonstrate the appearance of giant nonreciprocal charge transport in the conductive oxide interface, LaAlO3/SrTiO3, where the electrons are confined to two-dimensions with low Fermi energy. In addition, the Rashba spin???orbit interaction correlated with the sub-band hierarchy of this system enables a strongly tunable nonreciprocal response by applying a gate voltage. The observed behavior of directional response in LaAlO3/SrTiO3 is associated with comparable energy scales among kinetic energy, spin???orbit interaction, and magnetic field, which inspires a promising route to enhance nonreciprocal response and its functionalities in spin orbitronics

    Intestinal Neuropod Cell GUCY2C Regulates Visceral Pain

    Get PDF
    Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP(cGMP), which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we revealed that intestinal GUCY2C was selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2Chi neuropod cells associated with cocultured dorsal root ganglia neurons and induced hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient - but not GUCY2C-deficient - neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling in VP that was comparable with chemically induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes

    Direct recordings of grid-like neuronal activity in human spatial navigation

    Get PDF
    Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Visual Working Memory Capacity and Proactive Interference

    Get PDF
    Background: Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings: Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance: This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals

    Characterisation of PduS, the pdu Metabolosome Corrin Reductase, and Evidence of Substructural Organisation within the Bacterial Microcompartment

    Get PDF
    PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu) operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase. The gene for the cobalamin reductase from Citrobacter freundii (pduS) has been cloned to allow the protein to be overproduced recombinantly in E. coli with an N-terminal His-tag. Purified recombinant PduS is shown to be a flavoprotein with a non-covalently bound FMN that also contains two coupled [4Fe-4S] centres. It is an NADH-dependent flavin reductase that is able to mediate the one-electron reductions of cob(III)alamin to cob(II)alamin and cob(II)alamin to cob(I)alamin. The [4Fe-4S] centres are labile to oxygen and their presence affects the midpoint redox potential of flavin. Evidence is presented that PduS is able to bind cobalamin, which is inconsistent with the view that PduS is merely a flavin reductase. PduS is also shown to interact with one of the shell proteins of the metabolosome, PduT, which is also thought to contain an [Fe-S] cluster. PduS is shown to act as a corrin reductase and its interaction with a shell protein could allow for electron passage out of the bacterial microcompartment

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore