223 research outputs found

    Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates

    Get PDF
    PURPOSE: Diffusion magnetic resonance imaging (dMRI) studies report altered white matter (WM) development in preterm infants. Neurite orientation dispersion and density imaging (NODDI) metrics provide more realistic estimations of neurite architecture in vivo compared with standard diffusion tensor imaging (DTI) metrics. This study investigated microstructural maturation of WM in preterm neonates scanned between 25 and 45 weeks postmenstrual age (PMA) with normal neurodevelopmental outcomes at 2 years using DTI and NODDI metrics. METHODS: Thirty-one neonates (n = 17 male) with median (range) gestational age (GA) 32+1 weeks (24+2-36+4) underwent 3 T brain MRI at median (range) post menstrual age (PMA) 35+2 weeks (25+3-43+1). WM tracts (cingulum, fornix, corticospinal tract (CST), inferior longitudinal fasciculus (ILF), optic radiations) were delineated using constrained spherical deconvolution and probabilistic tractography in MRtrix3. DTI and NODDI metrics were extracted for the whole tract and cross-sections along each tract to assess regional development. RESULTS: PMA at scan positively correlated with fractional anisotropy (FA) in the CST, fornix and optic radiations and neurite density index (NDI) in the cingulum, CST and fornix and negatively correlated with mean diffusivity (MD) in all tracts. A multilinear regression model demonstrated PMA at scan influenced all diffusion measures, GA and GAxPMA at scan influenced FA, MD and NDI and gender affected NDI. Cross-sectional analyses revealed asynchronous WM maturation within and between WM tracts.). CONCLUSION: We describe normal WM maturation in preterm neonates with normal neurodevelopmental outcomes. NODDI can enhance our understanding of WM maturation compared with standard DTI metrics alone

    Multimodal image analysis of clinical influences on preterm brain development.

    Get PDF
    OBJECTIVE: Premature birth is associated with numerous complex abnormalities of white and gray matter and a high incidence of long-term neurocognitive impairment. An integrated understanding of these abnormalities and their association with clinical events is lacking. The aim of this study was to identify specific patterns of abnormal cerebral development and their antenatal and postnatal antecedents. METHODS: In a prospective cohort of 449 infants (226 male), we performed a multivariate and data-driven analysis combining multiple imaging modalities. Using canonical correlation analysis, we sought separable multimodal imaging markers associated with specific clinical and environmental factors and correlated to neurodevelopmental outcome at 2 years. RESULTS: We found five independent patterns of neuroanatomical variation that related to clinical factors including age, prematurity, sex, intrauterine complications, and postnatal adversity. We also confirmed the association between imaging markers of neuroanatomical abnormality and poor cognitive and motor outcomes at 2 years. INTERPRETATION: This data-driven approach defined novel and clinically relevant imaging markers of cerebral maldevelopment, which offer new insights into the nature of preterm brain injury. Ann Neurol 2017;82:233-246

    Statistics and geometry of cosmic voids

    Full text link
    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological NN-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.Comment: 39 pages, 8 EPS figures, supersedes arXiv:0802.038

    Parental age effects on neonatal white matter development.

    Get PDF
    OBJECTIVE: Advanced paternal age is associated with poor offspring developmental outcome. Though an increase in paternal age-related germline mutations may affect offspring white matter development, outcome differences could also be due to psychosocial factors. Here we investigate possible cerebral changes prior to strong environmental influences using brain MRI in a cohort of healthy term-born neonates. METHODS: We used structural and diffusion MRI images acquired soon after birth from a cohort (n = 275) of healthy term-born neonates. Images were analysed using a customised tract based spatial statistics (TBSS) processing pipeline. Neurodevelopmental assessment using the Bayley-III scales was offered to all participants at age 18 months. For statistical analysis neonates were compared in two groups, representing the upper quartile (paternal age ≥38 years) and lower three quartiles. The same method was used to assess associations with maternal age. RESULTS: In infants with older fathers (≥38 years), fractional anisotropy, a marker of white matter organisation, was significantly reduced in three early maturing anatomical locations (the corticospinal tract, the corpus callosum, and the optic radiation). Fractional anisotropy in these locations correlated positively with Bayley-III cognitive composite score at 18 months in the advanced paternal age group. A small but significant reduction in total brain volume was also observed in in the infants of older fathers. No significant associations were found between advanced maternal age and neonatal imaging. CONCLUSIONS: The epidemiological association between advanced paternal age and offspring outcome is extremely robust. We have for the first time demonstrated a neuroimaging phenotype of advanced paternal age before sustained parental interaction that correlates with later outcome

    Effects of gestational age at birth on perinatal structural brain development in healthy term-born babies

    Get PDF
    Infants born in early term (37-38 weeks gestation) experience slower neurodevelopment than those born at full term (40-41 weeks gestation). While this could be due to higher perinatal morbidity, gestational age at birth may also have a direct effect on the brain. Here we characterise brain volume and white matter correlates of gestational age at birth in healthy term-born neonates and their relationship to later neurodevelopmental outcome using T2 and diffusion weighted MRI acquired in the neonatal period from a cohort (n = 454) of healthy babies born at term age (>37 weeks gestation) and scanned between 1 and 41 days after birth. Images were analysed using tensor-based morphometry and tract-based spatial statistics. Neurodevelopment was assessed at age 18 months using the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). Infants born earlier had higher relative ventricular volume and lower relative brain volume in the deep grey matter, cerebellum and brainstem. Earlier birth was also associated with lower fractional anisotropy, higher mean, axial, and radial diffusivity in major white matter tracts. Gestational age at birth was positively associated with all Bayley-III subscales at age 18 months. Regression models predicting outcome from gestational age at birth were significantly improved after adding neuroimaging features associated with gestational age at birth. This work adds to the body of evidence of the impact of early term birth and highlights the importance of considering the effect of gestational age at birth in future neuroimaging studies including term-born babies

    A prospective randomized study of megestrol acetate and ibuprofen in gastrointestinal cancer patients with weight loss

    Get PDF
    The use of megestrol acetate in the treatment of weight loss in gastrointestinal cancer patients has been disappointing. The aim of the present study was to compare the combination of megestrol acetate and placebo with megestrol acetate and ibuprofen in the treatment of weight loss in such patients. At baseline, 4–6 weeks and 12 weeks, patients underwent measurements of anthropometry, concentrations of albumin and C-reactive protein and assessment of appetite, performance status and quality of life using EuroQol-EQ-5D and EORTC QLQ-C30. Thirty-eight and 35 patients (median weight loss 18%) were randomized to megestrol acetate/placebo or megestrol acetate/ibuprofen, respectively, for 12 weeks. Forty-six (63%) of patients failed to complete the 12-week assessment. Of those evaluable at 12 weeks, there was a decrease in weight (median 2.8 kg) in the megestrol acetate/placebo group compared with an increase (median 2.3 kg) in the megestrol acetate/ibuprofen group (P < 0.001). There was also an improvement in the EuroQol-EQ-5D quality of life scores of the latter group (P < 0.05). The combination of megestrol acetate/ibuprofen appeared to reverse weight loss and appeared to improve quality of life in patients with advanced gastrointestinal cancer. Further trials of this novel regimen in weight-losing patients with hormone-insensitive cancers are warranted. © 1999 Cancer Research Campaig

    Genetic and Environmental Influences on Individual Differences in Attitudes Toward Homosexuality: An Australian Twin Study

    Get PDF
    Previous research has shown that many heterosexuals hold negative attitudes toward homosexuals and homosexuality (homophobia). Although a great deal of research has focused on the profile of homophobic individuals, this research provides little theoretical insight into the aetiology of homophobia. To examine genetic and environmental influences on variation in attitudes toward homophobia, we analysed data from 4,688 twins who completed a questionnaire concerning sexual behaviour and attitudes, including attitudes toward homosexuality. Results show that, in accordance with literature, males have significantly more negative attitudes toward homosexuality than females and non-heterosexuals are less homophobic than heterosexuals. In contrast with some earlier findings, age had no significant effect on the homophobia scores in this study. Genetic modelling showed that variation in homophobia scores could be explained by additive genetic (36%), shared environmental (18%) and unique environmental factors (46%). However, corrections based on previous findings show that the shared environmental estimate may be almost entirely accounted for as extra additive genetic variance arising from assortative mating for homophobic attitudes. The results suggest that variation in attitudes toward homosexuality is substantially inherited, and that social environmental influences are relatively minor

    Accounting for a Quantitative Trait Locus for Plasma Triglyceride Levels: Utilization of Variants in Multiple Genes

    Get PDF
    For decades, research efforts have tried to uncover the underlying genetic basis of human susceptibility to a variety of diseases. Linkage studies have resulted in highly replicated findings and helped identify quantitative trait loci (QTL) for many complex traits; however identification of specific alleles accounting for linkage remains elusive. The purpose of this study was to determine whether with a sufficient number of variants a linkage signal can be fully explained.We used comprehensive fine-mapping using a dense set of single nucleotide polymorphisms (SNPs) across the entire quantitative trait locus (QTL) on human chromosome 7q36 linked to plasma triglyceride levels. Analyses included measured genotype and combined linkage association analyses.Screening this linkage region, we found an over representation of nominally significant associations in five genes (MLL3, DPP6, PAXIP1, HTR5A, INSIG1). However, no single genetic variant was sufficient to account for the linkage. On the other hand, multiple variants capturing the variation in these five genes did account for the linkage at this locus. Permutation analyses suggested that this reduction in LOD score was unlikely to have occurred by chance (p = 0.008).With recent findings, it has become clear that most complex traits are influenced by a large number of genetic variants each contributing only a small percentage to the overall phenotype. We found that with a sufficient number of variants, the linkage can be fully explained. The results from this analysis suggest that perhaps the failure to identify causal variants for linkage peaks may be due to multiple variants under the linkage peak with small individual effect, rather than a single variant of large effect

    Individual Differences in Processing Speed and Working Memory Speed as Assessed with the Sternberg Memory Scanning Task

    Get PDF
    The Sternberg Memory Scanning (SMS) task provides a measure of processing speed (PS) and working memory retrieval speed (WMS). In this task, participants are presented with sets of stimuli that vary in size. After a delay, one item is presented, and participants indicate whether or not the item was part of the set. Performance is assessed by speed and accuracy for both the positive (item is part of the set) and the negative trials (items is not part of the set). To examine the causes of variation in PS and WMS, 623 adult twins and their siblings completed the SMS task. A non-linear growth curve (nLGC) model best described the increase in reaction time with increasing set size. Genetic analyses showed that WMS (modeled as the Slope in the nLGC model) has a relatively small variance which is not due to genetic variation while PS (modeled as the Intercept in the nLGC model) showed large individual differences, part of which could be attributed to additive genetic factors. Heritability was 38% for positive and 32% for negative trials. Additional multivariate analyses showed that the genetic effects on PS for positive and negative trials were completely shared. We conclude that genetic influences on working memory performance are more likely to act upon basic processing speed and (pre)motoric processes than on the speed with which an item is retrieved from short term memory
    corecore