713 research outputs found
Field trial with oral vaccination of dogs against rabies in the Philippines
BACKGROUND: The potential role of oral vaccination of dogs against rabies in the Philippines was investigated in terms of safety and efficacy. METHODS: Prior to the vaccination campaign, a house-to-house survey was carried out to collect data on the dog population in the study area, the coastal village of Mindoro. During the vaccination campaign all households were visited again, and all dogs encountered (>2 months old) were, if possible, vaccinated. Furthermore, 14 dogs vaccinated were bled on different occasions. RESULTS: During the survey, a total of 216 dogs were counted, and none of these animals had previously been vaccinated against rabies. Only 17 dogs could be restrained and subsequently vaccinated directly by the vaccinators. Another 126 dogs were offered a local-made boiled intestine bait, containing a capsule filled with 3.0 ml SAD B19 (10(7.9) FFU/ml). The bait acceptance rate of dogs offered a bait was 96.1%. The vaccination coverage of the dog population (> 2 months old) estimated by the number of animals vaccinated directly and the number of dogs that accepted a bait and subsequently punctured the vaccine container was 76%. Fifteen and 29 days after the vaccination campaign 6 and 10 dogs (n = 14) had rabies virus neutralizing antibody titres of ≥ 0.5 IU/ml, respectively. No unintentional contacts of nontarget species, including humans, with the vaccine virus were reported. CONCLUSIONS: The results of the campaign show that oral vaccination of dogs against rabies is a promising supplementary method in dog rabies control in the Philippines
Do logarithmic proximity measures outperform plain ones in graph clustering?
We consider a number of graph kernels and proximity measures including
commute time kernel, regularized Laplacian kernel, heat kernel, exponential
diffusion kernel (also called "communicability"), etc., and the corresponding
distances as applied to clustering nodes in random graphs and several
well-known datasets. The model of generating random graphs involves edge
probabilities for the pairs of nodes that belong to the same class or different
predefined classes of nodes. It turns out that in most cases, logarithmic
measures (i.e., measures resulting after taking logarithm of the proximities)
perform better while distinguishing underlying classes than the "plain"
measures. A comparison in terms of reject curves of inter-class and intra-class
distances confirms this conclusion. A similar conclusion can be made for
several well-known datasets. A possible origin of this effect is that most
kernels have a multiplicative nature, while the nature of distances used in
cluster algorithms is an additive one (cf. the triangle inequality). The
logarithmic transformation is a tool to transform the first nature to the
second one. Moreover, some distances corresponding to the logarithmic measures
possess a meaningful cutpoint additivity property. In our experiments, the
leader is usually the logarithmic Communicability measure. However, we indicate
some more complicated cases in which other measures, typically, Communicability
and plain Walk, can be the winners.Comment: 11 pages, 5 tables, 9 figures. Accepted for publication in the
Proceedings of 6th International Conference on Network Analysis, May 26-28,
2016, Nizhny Novgorod, Russi
The histone deacetylase inhibitor valproic acid attenuates phospholipase Cγ2 and IgE-mediated mast cell activation.
Mast cell activation through the high-affinity IgE receptor (FcεRI) plays a central role in allergic reactions. FcεRI-mediated activation triggers multiple signaling pathways leading to degranulation and synthesis of different inflammatory mediators. IgE-mediated mast cell activation can be modulated by different molecules, including several drugs. Herein, we investigated the immunomodulatory activity of the histone deacetylase inhibitor valproic acid (VPA) on IgE-mediated mast cell activation. To this end, bone marrow-derived mast cells (BMMC) were sensitized with IgE and treated with VPA followed by FcεRI cross-linking. The results indicated that VPA reduced mast cell IgE-dependent degranulation and cytokine release. VPA also induced a significant reduction in the cell surface expression of FcεRI and CD117, but not other mast cell surface molecules. Interestingly, VPA treatment inhibited the phosphorylation of PLCγ2, a key signaling molecule involved in IgE-mediated degranulation and cytokine secretion. However, VPA did not affect the phosphorylation of other key components of the FcεRI signaling pathway, such as Syk, Akt, ERK1/2, or p38. Altogether, our data demonstrate that VPA affects PLCγ2 phosphorylation, which in turn decreases IgE-mediated mast cell activation. These results suggest that VPA might be a key modulator of allergic reactions and might be a promising therapeutic candidate
Valproic acid restricts mast cell activation by Listeria monocytogenes.
Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection
Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair
Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer
The yeast P5 type ATPase, Spf1, regulates manganese transport into the endoplasmic reticulum
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn2+ homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn2+ in ∆spf1 cells and an increase following it’s overexpression. In agreement with the observed loss of luminal Mn2+ we could observe concurrent reduction in many Mn2+-related process in the ER lumen. Conversely, cytosolic Mn2+-dependent processes were increased. Together, these data support a role for Spf1p in Mn2+ transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn2+-dependent neurological disorders
East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin
Background: Rhipicephalus sanguineus belongs to a complex of hard tick species with high veterinary-medical significance. Recently, new phylogenetic units have been discovered within R. sanguineus, which therefore needs taxonomic revision. The present study was initiated to provide new information on the phylogeography of relevant haplotypes from less studied regions of Europe and Africa. With this aim, molecular-phylogenetic analyses of two mitochondrial markers were performed on 50 ticks collected in Hungary, the Balkans, countries along the Mediterranean Sea, Kenya and Ivory Coast. Results: In the "temperate lineage" of R. sanguineus, based on cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes, Rhipicephalus sp. I was only found in the eastern part of the Mediterranean Basin (with relatively homogenous haplotypes), whereas Rhipicephalus sp. II occurred in the middle-to-western part of this region (with phylogenetically dichotomous haplotypes). Ticks identified as R. leporis (based on morphology and cox1 gene) were found in Kenya and Ivory Coast. These clustered phylogenetically within R. sanguineus (s.l.) ("tropical lineage"). Conclusions: In the Mediterranean Basin two mitochondrial lineages of R. sanguineus, i. e. Rhipicephalus sp. I and Rhipicephalus sp. II exist, which show different geographical distribution. Therefore, data from this study confirm limited gene flow between Rhipicephalus sp. I and Rhipicephalus sp. II, but more evidence (analyses of nuclear markers, extensive morphological and biological comparison etc.) are necessary to infer if they belong to different species or not. The phylogenetic relationships of eastern and western African ticks, which align with R. leporis, need to be studied further within R. sanguineus (s.l.) ("tropical lineage")
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
- …