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Abstract
Let G be a simple graph with n vertices and (0, 1)-adjacency matrix A. As usual,
S(G) = J – 2A – I denotes the Seidel matrix of the graph G. Suppose θ1,θ2, . . . ,θn and
λ1,λ2, . . . ,λn are the eigenvalues of the adjacency matrix and the Seidel matrix of G,
respectively. The Estrada index of the graph G is defined as

∑n
i=1 e

θi . We define and
investigate the Seidel-Estrada index, SEE = SEE(G) =

∑n
i=1 e

λi . In this paper the basic
properties of the Seidel-Estrada index are investigated. Moreover, some lower and
upper bounds for the Seidel-Estrada index in terms of the number of vertices are
obtained. In addition, some relations between SEE and the Seidel energy Es(G) are
presented.
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1 Introduction
Throughout this paper, let G be a simple graph with vertex set V = {v, v, . . . , vn}. The
adjacency matrix A(G) = [aij] of G is a binary matrix of order n such that aij =  if the vertex
vi is adjacent to the vertex vj, and  otherwise. The Seidel matrix S(G) = [sij] is equal to
Jn – A(G) – In, where the symbol Jn denotes the square matrix of order n all of whose
entries are equal to . Since A(G) and S(G) are real symmetric matrices, their eigenvalues
must be real. The eigenvalues of G are referred to as the eigenvalues of A(G), denoted
by θ(A(G)), θ(A(G)), . . . , θn(A(G)) and similarly, λ(S(G)) ≥ λ(S(G)) ≥ · · · ≥ λn(S(G)), the
Seidel eigenvalues of G. For simplicity, we write λi instead of λi(S(G)). The sequence of n
Seidel eigenvalues is called the Seidel spectrum of G (for short S-spec(G)). We now present
an example of pairs of graphs on n vertices with the same Seidel spectrum such that one
of them is a connected graph and the other one is not.

Example  Here we address two examples from non-isomorphic graphs which are co-
spectral:

(i) S-spec(Kp,q) = S-spec(Kn) if p + q = n,

(ii) S-spec(Kn/ ∪ Kn/) = S-spec(Kn) (n is even).

In our recent studies on Seidel eigenvalues it has been shown that a lower and upper
bound exists for the sum of powers of the absolute eigenvalues of the Seidel matrix, sug-
gesting a common core architecture similar to the cases of adjacency and signless Lapla-
cian matrix []. The reader can find more information related to the eigenvalues of the
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adjacency matrix and the spectrum of G in []. The Estrada index of a graph G is defined
as

EE(G) =
n∑

i=

eθi(A(G)). ()

This graph-spectrum-based structural descriptor was first proposed by Estrada in ;
see [–]. Already, de la Peña et al. [] proposed to call it the Estrada index, a name that
in the meantime has been commonly accepted. Several kinds of Estrada indices were dis-
cussed in [–] and the references therein. For the recent work of the mathematical prop-
erties on the Estrada and signless Laplacian Estrada indices, see [, ]. In this review, we
summarize some indirect evidence to support the concept of a Seidel matrix. Similarly,
we define the Seidel-Estrada index for the graph G in full analogy with equation () as

SEE(G) =
n∑

i=

eλi . ()

For details on the theory of the Estrada index and several lower and upper bounds, see [,
, , ]. Ayyaswamy et al. [] gave a lower bound for a signless Laplacian of the graph
using the numbers of vertices and edges. A conference matrix is a square matrix C of order
n with zero diagonal and ± off the diagonal, such that CCT = (n – )I . If C is symmetric,
then C is the Seidel matrix of a graph and this graph is called a conference graph; see [,
]. The aim of this paper is to find the upper and lower bounds for the Seidel-Estrada
index of the graph G. The rest of the paper is organized as follows: In Section , we give
some definitions and obtain some upper and lower bounds for the Seidel-Estrada index.
In Section , we present a relation between the Seidel-Estrada index and the Seidel energy
of a graph G, and we prove several results on the Seidel-Estrada index.

2 Estimates of the Seidel-Estrada index
Here we give some new lower and upper bounds on Seidel-Estrada index. For convenience,
we give some notation and properties which will be used in the following proofs of our
results. Let Sk = Sk(G) =

∑n
i=(λi)k , and Sk(G) =

∑n
i= |λi|k . From the Taylor expansion of ex,

it is easy to see that the Seidel-Estrada index and Sk(G) of G are related by

SEE(G) =
∞∑

k=

Sk(G)
k!

. ()

It is easy to see that any graph G of order n ≥  has SEE(G) > n. (If equality holds, then
λ = λ = · · · = λn = . By Lemma .(ii), we can get a contradiction.)

Lemma . [] For any graph G with n vertices, we have

(i) S(G) =
n∑

i=

λi = trace
(
S(G)

)
= ,

(ii) S(G) = S(G) =
n∑

i=

λ
i = trace

(
S(G)

)
= (n – ) + (n – ) = n(n – ),
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(iii) S(G) =
n∑

i=

λ
i ≤ S(G) ≤ (n – ) + (n – ),

(iv) S(G) =
n∑

i=

|λi| ≥ n
√

(n – ),

(v) Sk(G) ≤ Sk(G) =
n∑

i=

|λi|k ≤ (n – )k + (n – ), k = , , . . . ,

(vi) Sk(G) =
n∑

i=

|λi|k ≥ n
√

(n – )k , k = , , . . . .

Lemma . [] Let B be an n × n symmetric matrix with eigenvalues λ ≥ λ ≥ · · · ≥ λn

and let Bk be its leading k × k submatrix of B. Then, for i = , , . . . , k,

λn–i+(B) ≤ λk–i+(Bk) ≤ λk–i+(B), ()

where λi(B) is the ith greatest eigenvalue of B.

Lemma . Let G be a graph of order n ≥ . Then λ ≥ .

Proof Since n ≥ , therefore K or K must be an induced subgraph of G. Since λ(K) =
λ(K) = , by Lemma ., we get the required result. �

Theorem . Let G be a simple graph with n ≥  and det S(G) �= . Then the Seidel-
Estrada index of G is bounded by

√
n(n – ) < SEE(G) < n –  + e

√
n(n–). ()

Proof (a) To prove this theorem, we apply a technique similar to the proof of Theorem 
in []. At first we prove that the left inequality of ():

From (), we get

SEE(G) =
n∑

i=

eλi + 
∑

i<j

eλi eλj . ()

In view by the inequality between the geometric and arithmetic mean, we get


∑

i<j

eλi eλj ≥ n(n – )
(∏

i<j

eλi eλj

) 
n(n–)

= n(n – )

[( n∏

i=

eλi

)n–] 
n(n–)

= n(n – )
(
eS(G)) 

n = n(n – ). ()

By using the power series expansion, and Lemma ., we get

n∑

i=

eλi =
n∑

i=

∞∑

k=

(λi)k

k!
=

n∑

i=

(λi)

!
+

n∑

i=

(λi)

!
+

n∑

i=

(λi)

!
+

n∑

i=

∑

k≥

(λi)k

k!

= S + S + S +
n∑

i=

∑

k≥

(λi)k

k!
= n +  + n(n – ) +

n∑

i=

∑

k≥

(λi)k

k!
.
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Since
∑

k≥
(λi)k

k! ≥ 
∑

k≥
(λi)k

k! , we shall use a multiplier γ ∈ [, ], so as to arrive at

n∑

i=

eλi ≥ n + n(n – ) + γ

n∑

i=

∑

k≥

(λi)k

k!

= n + n(n – ) – γ n –


γ n(n – ) + γ

n∑

i=

∑

k≥

(λi)k

k!

= n + n(n – ) – γ n –


γ n(n – ) + γ SEE(G). ()

By substituting () and () back into () and solving for SEE(G), we obtain

SEE(G) ≥ γ


+

√
γ 


+ n( – γ /) – n( + γ /). ()

Now, we consider a function

f (x) =
x


+

√
x


+ n

(

 –
x


)

– n
(

 +
x


)

. ()

We have f ′(x) <  for x ≥ . Thus f (x) is a monotonically decreasing function for x > .
Consequently, the best lower bound for SEE(G) is attained γ = . Setting γ =  in (), we
arrive at the first half of Theorem .:

SEE(G) ≥ √
n(n – ).

Now, we have to prove that the lower bound is strict. For this purpose, we assume that the
left equality holds in (). Then we have

eλi+λj = eλk +λ� , for any i, j, k,� ∈ {, , . . . , n},

that is,

eλ+λ = eλ+λ = · · · = eλ+λn = eλ+λ ,

and hence

λ = λ = · · · = λn.

By Lemma . and the trace of S(G), we can get a contradiction. Thus the left equality in
() is strict.

(b) Let us prove now the right inequality.
Since f (x) = ex monotonically increases in the interval (–∞,∞), we starting with equa-

tion (), we get

SEE(G) = n +
n∑

i=

∞∑

k=

(λi)k

k!
≤ n +

n∑

i=

∑

k≥

(|λi|)k

k!

= n +
∑

k≥

n∑

i=

[(λi)] k


k!
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≤ n +
∑

k≥


k!

(
S(G)

) k
 = n +

∑

k≥

(
√

n(n – ))k

k!

= n –  +
∞∑

k=

(
√

n(n – ))k

k!
= n –  + e

√
n(n–). ()

Suppose that the right equality holds in (). Then the equality holds in (). Thus we
have λi = |λi|, i = , , . . . , n. Since λ ≥  and by Lemma .(i), again we get a contradiction.
Hence the right inequality in () is strict. �

Theorem . Let G be a conference graph. Then the Seidel-Estrada index of G is equal to

SEE(G) = nch(
√

n – ), ()

where ch(x) is the hyperbolic cosine of x defined as follows:

ch(x) =
ex + e–x


.

Proof Since G is a conference graph, the Seidel matrix of a graph is symmetric and SST =
(n – )I , thus each Seidel eigenvalue equals λi =

√
n –  or λi = –

√
n – . Let the number of

positive eigenvalues of Seidel matrix S(G) be n+. Hence, λi = ±√
n –  and S =

∑n
i= λi =

∑n+
i=

√
n –  +

∑n
i=n++ –

√
n –  = , then n+ = n

 . Therefore

SEE(G) =
n∑

i=

eλi =
n+∑

i=

eλi +
n∑

i=n++

eλi =
n+∑

i=

e
√

n– +
n∑

i=n++

e–
√

n–

=
n+∑

i=

(
e
√

n– + e–
√

n–) = 

n
∑

i=

ch(
√

n – ) = nch(
√

n – ). �

3 Relation between Seidel-Estrada index and Seidel energy
Let G be a simple graph of order n, and its Seidel eigenvalues will be denoted by λ ≥ λ ≥
· · · ≥ λn. The Seidel energy Es(G) of graph G is defined by Es(G) = Es =

∑n
i= |λi| []. Since

n∑

i=

λi = ,

we have

Es(G) = 
n+∑

i=

λi = –
n∑

i=n++

λi. ()

In this section, we investigate the relation between the Seidel-Estrada index and the Seidel
energy.

Theorem . The Seidel-Estrada index SEE(G) and the Seidel energy Es(G) satisfy the
following inequality:

e


Es(G) + (n – n+)e– Es(G)
(n–n+) ≤ SEE(G) ≤ n –  + eEs(G) ()

with left equality holding if and only if G ∼= Kn.
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Proof (a) At first, we prove the left inequality of ().
For G ∼= Kn, SEE(G) = (n – )e + e–n+ and hence the left equality holds in (). Otherwise,

we have to prove that the lower bound is strict for G � Kn . We have ex ≥ ex with equality
holding if and only if x = . By the arithmetic-geometric mean inequality, we get

n∑

i=n++

eλi ≥ (n – n+)

( n∏

i=n++

eλi

) 
n–n+

= (n – n+)
(
e
∑n

i=n++ λi
) 

n–n+ = (n – n+)e– Es(G)
(n–n+) .

Using the above result, we have

SEE(G) =
n∑

i=

eλi =
∑

λi>

eλi +
∑

λi≤

eλi

≥
n+∑

i=

eλi + (n – n+)e– Es(G)
(n–n+)

=
e


Es(G) + (n – n+)e– Es(G)
(n–n+) .

Suppose that the left equality holds in () for G � Kn. Then we must have

λ = λ = · · · = λn+ =  and λn++ = λn++ = · · · = λn.

Since G � Kn, we see that K, is an induced subgraph G or K ∪K is an induced subgraph
of G. We have λ(G) ≥ λ(K,) =  and λ(G) ≥ λ(K ∪ K) = . In both cases, we get a
contradiction.

(b) Upper bound:
Starting with equation (), we get

SEE(G) = n +
n∑

i=

∑

k≥

(λi)k

k!
≤ n +

n∑

i=

∑

k≥

|λi|k
k!

≤ n +
∑

k≥


k!

( n∑

i=

|λi|
)k

= n –  +
∞∑

k=

(Es)k

k!
= n –  + eEs(G). ()

Suppose now that the right equality holds in (). Then all the above inequalities must
be equalities. From (), we have |λi| = λi, for all i. By the trace of S(G), we have λ = λ =
· · · = λn = , a contradiction by Lemma .. This completes the proof of the theorem. �

Remark . From equation () and Lemma ., we get

SEE(G) ≤ n +
n∑

i=

∑

k≥

|λi|k
k!

= n + Es(G) +
n∑

i=

∑

k≥

|λi|k
k!

= n + Es(G) +
n∑

i=

∑

k≥

[(λi)] k


k!
≤ n + Es(G) +

∑

k≥


k!

[ n∑

i=

(λi)

] k


= n + Es(G) –  –
√

n(n – ) +
∑

k≥

(
√

n(n – ))k

k!
.
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Hence

SEE(G) – Es(G) ≤ n –  –
√

n(n – ) + e
√

n(n–). ()

Equality does not hold because if the equality is to occur, then we have |λi| = λi, for all i.
Hence by Lemma .(i), again we get a contradiction. We also have

SEE(G) – Es(G) <
√

n – (
√

n –  –
√

n) + e
√

n(n–)

and SEE(G) < n –  + eEs ; we also give an inequality between the SEE(G) and Es(G).

Theorem . Let G be a simple graph with n vertices. Then

e|λ| + e|λ| + · · · + e|λn| ≥  + e
Es

n + (n – )e
Es
n ()

with equality holding if and only if |λ| = Es
n , |λ| = |λ| = · · · = |λn–| = Es

n , |λn| = .

Proof We have the Seidel eigenvalues λ,λ, . . . ,λn with |λ| > , |λn| ≥ . Then, by the
arithmetic-geometric mean inequality, we get

e|λ| + e|λ| + · · · + e|λn| ≥ e|λ| + e|λn| + (n – )

(n–∏

i=

e|λi|
) 

n–

= e|λ| + e|λn| + (n – )
(
eEs–|λ|–|λn|) 

n– ()

as Es =
∑n

i= |λi|. Now, we consider the function

f (x, y) = ex + ey + (n – )e
Es–x–y

n– , for x > , y ≥ .

We have

∂f
∂x

= fx = ex – e
Es–x–y

n– ,
∂f
∂y

= fy = ey – e
Es–x–y

n–

fxx = ex +


n – 
e

Es–x–y
n– , fyy = ey +


n – 

e
Es–x–y

n–

fxy = fyx =


n – 
e

Es–x–y
n– .

To find the minimum of the function of f (x, y), we get

fx = fy =  ⇒ (n – )x + y = Es, x + (n – )y = Es ⇒ x + y =
Es

n
. ()

For x + y = Es
n , we have fxx >  and

fxxfyy – f 
xy =

(

ex +


n – 
e

Es–x–y
n–

)(

ey +


n – 
e

Es–x–y
n–

)

–
(


n – 

e
Es–x–y

n–

)

= ex+y +


n – 
e

Es–x–y
n–

(
ex + ey) = e

Es
n +


n – 

e
Es
n
(
ex + e

Es
n –x) > .
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From the above, we conclude that f (x, y) has a minimum value at x + y = Es
n and the mini-

mum value is ey + e
Es

n –y + (n – )e
Es– Es

n
n– . Now we can see easily that g(y) = ey + e

Es
n –y + (n –

)e
Es
n is an increasing function for y ≥ . Thus

e|λn| + e
Es

n –|λn| + (n – )e
Es
n ≥ e + e

Es
n – + (n – )e

Es
n =  + e

Es
n + (n – )e

Es
n .

Hence we get the required result in ().
Now suppose that equality holds in (). Then all inequalities in the above argument

must be equalities. From equality in () and Es =
∑n

i= |λi|, we get |λ| = |λ| = · · · =
|λn–| = Es

n as |λ| + |λn| = Es
n . Thus, |λ| = Es

n , |λ| = |λ| = · · · = |λn–| = Es
n , |λn| = .

Conversely, one can easily see that equality holds in () for a Seidel matrix of graph by
|λ| = Es

n , |λ| = |λ| = · · · = |λn–| = Es
n , |λn| = . �

4 Conclusion
In this paper, we investigate the Seidel matrix and Seidel eigenvalues. Moreover, we de-
fined the Seidel-Estrada index and Seidel energy, and computed the upper and lower
bounds for the Seidel-Estrada index. We obtained a relation between the Seidel-Estrada
index and the Seidel energy of a graph G, and we proved several theorems on the Seidel-
Estrada index. The reader can use these results to calculate the Seidel energy and the
Seidel-Estrada index.
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