333 research outputs found

    Tognolini et al. Reply

    Get PDF

    Evaluating the impact of sex-biased genetic admixture in the americas through the analysis of haplotype data

    Get PDF
    A general imbalance in the proportion of disembarked males and females in the Americas has been documented during the Trans-Atlantic Slave Trade and the Colonial Era and, although less prominent, more recently. This imbalance may have left a signature on the genomes of modern-day populations characterised by high levels of admixture. The analysis of the uniparental systems and the evaluation of continental proportion ratio of autosomal and X chromosomes revealed a general sex imbalance towards males for European and females for African and Indigenous American ancestries. However, the consistency and degree of this imbalance are variable, suggesting that other factors, such as cultural and social practices, may have played a role in shaping it. Moreover, very few investigations have evaluated the sex imbalance using haplotype data, containing more critical information than genotypes. Here, we analysed genome-wide data for more than 5000 admixed American individuals to assess the presence, direction and magnitude of sex-biased admixture in the Americas. For this purpose, we applied two haplotype-based approaches, ELAI and NNLS, and we compared them with a genotype-based method, ADMIXTURE. In doing so, besides a general agreement between methods, we unravelled that the post-colonial admixture dynamics show higher complexity than previously described

    Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles

    Get PDF
    We investigate by first-principles simulations the resonant electron-transfer lifetime from the excited state of an organic adsorbate to a semiconductor surface, namely isonicotinic acid on rutile TiO2_2(110). The molecule-substrate interaction is described using density functional theory, while the effect of a truly semi-infinite substrate is taken into account by Green's function techniques. Excitonic effects due to the presence of core-excited atoms in the molecule are shown to be instrumental to understand the electron-transfer times measured using the so-called core-hole-clock technique. In particular, for the isonicotinic acid on TiO2_2(110), we find that the charge injection from the LUMO is quenched since this state lies within the substrate band gap. We compute the resonant charge-transfer times from LUMO+1 and LUMO+2, and systematically investigate the dependence of the elastic lifetimes of these states on the alignment among adsorbate and substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry

    Constraints for hypothetical interactions from a recent demonstration of the Casimir force and some possible improvements

    Get PDF
    The Casimir force is calculated in the configuration of a spherical lens and a disc of finite radius covered by CuCu and AuAu thin layers which was used in a recent experiment. The correction to the Casimir force due to finiteness of the disc radius is shown to be negligible. Also the corrections are discussed due to the finite conductivity, large-scale and short-scale deviations from the perfect shape of the bounding surfaces and the temperature correction. They were found to be essential when confronting the theoretical results with experimental data. Both Yukawa-type and power-law hypothetical forces are computed which may act in the configuration under consideration due to the exchange of light and/or massless elementary particles between the atoms of the lens and the disc. New constraints on the constants of these forces are determined which follow from the fact that they were not observed within the limits of experimental errors. For Yukawa-type forces the new constraints are up to 30 times stronger than the best ones known up today. A possible improvement of experimental parameters is proposed which gives the possibility to strengthen constraints on Yukawa-type interactions up to 10410^4 times and on power-law interactions up to several hundred times.Comment: 15 pages, 3 figures, subm. to Phys. Rev.

    The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains

    Get PDF
    Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.We are grateful to Soprintendenza Archeologia, Belle Arti e Paesaggio dell’Umbria, to Istituto Comprensivo Statale Foligno 5 (Perugia) and to all the volunteers who generously participated in this survey and made this research possible. We thank our colleagues Prof. Fausto Panara and Dr. Livia Lucentini with whom we have been discussing the feasibility and the first steps of this project, and Prof. Cristina Cereda, Dr. Gaetano Grieco, Dr. Marialuisa Valente, Dr. Nicole Huber and Jannika Oeke for technical support. We would like to thank the two anonymous reviewers for their suggestions and thoughtful comments. This research received support from: the Italian Ministry of Education, University and Research projects FIR2012 RBFR126B8I (to AO and AA), PRIN2017 20174BTC4R (to AA); Dipartimenti di Eccellenza Program (2018–2022)—Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia (to AA, AO, OS and AT) and Department of Biology, University of Florence (to DC); the Fondazione Cariplo (project no. 2018–2045 to AA, AO and AT); the Fon-dazione Carifol (2008 to AA) and the Tiroler Wissenschaftsfonds (TWF) (UNI-404/1998) (to MB)

    Brane world corrections to Newton's law

    Full text link
    We discuss possible variations of the effective gravitational constant with length scale, predicted by most of alternative theories of gravity and unified models of physical interactions. After a brief general exposition, we review in more detail the predicted corrections to Newton's law of gravity in diverse brane world models. We consider various configurations in 5 dimensions (flat, de Sitter and AdS branes in Einstein and Einstein-Gauss-Bonnet theories, with and without induced gravity and possible incomplete graviton localization), 5D multi-brane systems and some models in higher dimensions. A common feature of all models considered is the existence of corrections to Newton's law at small radii comparable with the bulk characteristic length: at such radii, gravity on the brane becomes effectively multidimensional. Many models contain superlight perturbation modes, which modify gravity at large scale and may be important for astrophysics and cosmology.Comment: Brief review, 16 pages, 92 references. Some description and references adde

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought

    Influence of Natural Organic Matter Fouling and Osmotic Backwash on Pressure Retarded Osmosis Energy Production from Natural Salinity Gradients

    Get PDF
    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients

    Mitochondrial Haplogroup H1 in North Africa: An Early Holocene Arrival from Iberia

    Get PDF
    The Tuareg of the Fezzan region (Libya) are characterized by an extremely high frequency (61%) of haplogroup H1, a mitochondrial DNA (mtDNA) haplogroup that is common in all Western European populations. To define how and when H1 spread from Europe to North Africa up to the Central Sahara, in Fezzan, we investigated the complete mitochondrial genomes of eleven Libyan Tuareg belonging to H1. Coalescence time estimates suggest an arrival of the European H1 mtDNAs at about 8,000–9,000 years ago, while phylogenetic analyses reveal three novel H1 branches, termed H1v, H1w and H1x, which appear to be specific for North African populations, but whose frequencies can be extremely different even in relatively close Tuareg villages. Overall, these findings support the scenario of an arrival of haplogroup H1 in North Africa from Iberia at the beginning of the Holocene, as a consequence of the improvement in climate conditions after the Younger Dryas cold snap, followed by in situ formation of local H1 sub-haplogroups. This process of autochthonous differentiation continues in the Libyan Tuareg who, probably due to isolation and recent founder events, are characterized by village-specific maternal mtDNA lineages

    Surface states characterization in the strongly interacting graphene/Ni(111) system

    Get PDF
    By combining nonlinear photoemission experiments and density functional theory calculations, we study the modification of Ni(111) surface states induced by the presence of graphene. The main result is that graphene is able to displace the Ni(111) surface states from the valence band close to the Fermi level uncovering the d-band of Ni. The shift of the surface states away from the Fermi level modifies their k-dispersion and the effective mass. The unoccupied image state of graphene/Ni(111) has been also characterized. The ab initio calculations give a theoretical insight into the electronic properties of graphene/Ni(111) in the two stable top-fcc and top-bridge phases showing that the interface properties are poorly dependent on the stacking. The screening properties to an externally applied electric field are also discussed
    corecore