39 research outputs found

    How do you say ‘hello’? Personality impressions from brief novel voices

    Get PDF
    On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated 64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics, adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired personality impressions in artificial voices

    I Feel what You Feel if You Are Similar to Me

    Get PDF
    Social interactions are influenced by the perception of others as similar or dissimilar to the self. Such judgements could depend on physical and semantic characteristics, such as membership in an ethnic or political group. In the present study we tested whether social representations of the self and of others could affect the perception of touch. To this aim, we assessed tactile perception on the face when subjects observed a face being touched by fingers. In different conditions we manipulated the identity of the shown face. In a first experiment, Caucasian and Maghrebian participants viewed a face belonging either to their own or to a different ethnic group; in a second experiment, Liberal and Conservative politically active participants viewed faces of politicians belonging to their own or to the opposite political party. The results showed that viewing a touched face most strongly enhanced the perception of touch on the observer's face when the observed face belonged to his/her own ethnic or political group

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration

    Get PDF
    Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1β. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1β levels or number of Il-1β+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1β function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception

    The evolutionary psychology of leadership trait perception

    Get PDF
    Knowles, Kristen K. - ORCID 0000-0001-9664-9055 https://orcid.org/0000-0001-9664-9055Many researchers now approach the understanding of how facial characteristics shape the perception of leadership ability through the lens of human evolution. This approach considers what skills and characteristics would have been valuable for leaders to possess in our evolutionary history, including dominance, masculinity, and trustworthiness. Moreover, it gives an understanding about why rapid categorisation of these social cues from faces is adaptive. In this chapter, I present evolutionary arguments for social inferences based on faces, and discuss how our understanding of this categorisation has shifted away from purely associative phenomena towards evolved, innate processes. I explain how the perception of leadership ability in faces is linked to variance in facial morphology, and how these morphologies tell us something about the individuals who carry them. Specific facial cues relating to leadership-relevant traits are discussed, as well as the underlying biological systems that accompany these traits. I also explain the importance of context and individual differences on the prioritisation of seemingly disparate facial cues to leadership: dominance and trustworthiness. I also discuss recent findings in this area which further extend these concepts to examine cues to leadership in women’s faces, generally overlooked by evolutionary psychologists, and how political ideology can interact with these effects.https://doi.org/10.1007/978-3-319-94535-4_5pubpu

    Decoding accuracy in supplementary motor cortex correlates with perceptual sensitivity to tactile roughness

    Get PDF
    Perceptual sensitivity to tactile roughness varies across individuals for the same degree of roughness. A number of neurophysiological studies have investigated the neural substrates of tactile roughness perception, but the neural processing underlying the strong individual differences in perceptual roughness sensitivity remains unknown. In this study, we explored the human brain activation patterns associated with the behavioral discriminability of surface texture roughness using functional magnetic resonance imaging (fMRI). First, a wholebrain searchlight multi-voxel pattern analysis (MVPA) was used to find brain regions from which we could decode roughness information. The searchlight MVPA revealed four brain regions showing significant decoding results: the supplementary motor area (SMA), contralateral postcentral gyrus (S1), and superior portion of the bilateral temporal pole (STP). Next, we evaluated the behavioral roughness discrimination sensitivity of each individual using the just-noticeable difference (JND) and correlated this with the decoding accuracy in each of the four regions. We found that only the SMA showed a significant correlation between neuronal decoding accuracy and JND across individuals; Participants with a smaller JND (i.e., better discrimination ability) exhibited higher decoding accuracy from their voxel response patterns in the SMA. Our findings suggest that multivariate voxel response patterns presented in the SMA represent individual perceptual sensitivity to tactile roughness and people with greater perceptual sensitivity to tactile roughness are likely to have more distinct neural representations of different roughness levels in their SMA. © 2015 Kim et al.close0

    Use of Z

    No full text

    How the human brain represents perceived dangerousness or \u201cpredacity\u201d of animals

    No full text
    Common or folk knowledge about animals is dominated by three dimensions: (1) level of cognitive complexity or "animacy;" (2) dangerousness or "predacity;" and (3) size. We investigated the neural basis of the perceived dangerousness or aggressiveness of animals, which we refer to more generally as "perception of threat." Using functional magnetic resonance imaging (fMRI), we analyzed neural activity evoked by viewing images of animal categories that spanned the dissociable semantic dimensions of threat and taxonomic class. The results reveal a distributed network for perception of threat extending along the right superior temporal sulcus. We compared neural representational spaces with target representational spaces based on behavioral judgments and a computational model of early vision and found a processing pathway in which perceived threat emerges as a dominant dimension: whereas visual features predominate in early visual cortex and taxonomy in lateral occipital and ventral temporal cortices, these dimensions fall away progressively from posterior to anterior temporal cortices, leaving threat as the dominant explanatory variable. Our results suggest that the perception of threat in the human brain is associated with neural structures that underlie perception and cognition of social actions and intentions, suggesting a broader role for these regions than has been thought previously, one that includes the perception of potential threat from agents independent of their biological class
    corecore