318 research outputs found
The Complexity of Fixed-Height Patterned Tile Self-Assembly
We characterize the complexity of the PATS problem for patterns of fixed
height and color count in variants of the model where seed glues are either
chosen or fixed and identical (so-called non-uniform and uniform variants). We
prove that both variants are NP-complete for patterns of height 2 or more and
admit O(n)-time algorithms for patterns of height 1. We also prove that if the
height and number of colors in the pattern is fixed, the non-uniform variant
admits a O(n)-time algorithm while the uniform variant remains NP-complete. The
NP-completeness results use a new reduction from a constrained version of a
problem on finite state transducers.Comment: An abstract version appears in the proceedings of CIAA 201
Tough nanoparticle-modified polymers
A crosslinked epoxy polymer has been modified by the addition of nano-silica particles. The particles were introduced via a sol-gel technique which gave a very well dispersed phase of nano-silica particles which were about 20 nm in diameter. The glass transition temperature was unchanged by the addition of the nanoparticles, but both the modulus and toughness were increased. The fracture energy, GIc, increased from 100 J/m 2 for the unmodified epoxy to 460 J/m2 for the epoxy with 20 wt. % of nano-silica. The microscopy studies showed evidence of debonding of the nanoparticles and subsequent plastic void growth of the epoxy polymer. A theoretical model of plastic void growth was used to confirm this mechanism. The cyclic-fatigue behaviour of the epoxy polymers has also been studied and the fatigue properties were clearly enhanced by the presence of the nano-silica particles. Indeed, it was found that the values of the strain-energy release rate at threshold, Gth, from the cyclic-fatigue tests increased steadily as the toughness, GIc, also increased, i.e. as the concentration of nano-silica particles was increased
Binary pattern tile set synthesis is NP-hard
In the field of algorithmic self-assembly, a long-standing unproven
conjecture has been that of the NP-hardness of binary pattern tile set
synthesis (2-PATS). The -PATS problem is that of designing a tile assembly
system with the smallest number of tile types which will self-assemble an input
pattern of colors. Of both theoretical and practical significance, -PATS
has been studied in a series of papers which have shown -PATS to be NP-hard
for , , and then . In this paper, we close the
fundamental conjecture that 2-PATS is NP-hard, concluding this line of study.
While most of our proof relies on standard mathematical proof techniques, one
crucial lemma makes use of a computer-assisted proof, which is a relatively
novel but increasingly utilized paradigm for deriving proofs for complex
mathematical problems. This tool is especially powerful for attacking
combinatorial problems, as exemplified by the proof of the four color theorem
by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and
Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by
Konev and Lisitsa using computer programs. We utilize a massively parallel
algorithm and thus turn an otherwise intractable portion of our proof into a
program which requires approximately a year of computation time, bringing the
use of computer-assisted proofs to a new scale. We fully detail the algorithm
employed by our code, and make the code freely available online
Choosing to live with home dialysis-patients' experiences and potential for telemedicine support: a qualitative study
<p>Abstract</p> <p>Background</p> <p>This study examines the patients' need for information and guidance in the selection of dialysis modality, and in establishing and practicing home dialysis. The study focuses on patients' experiences living with home dialysis, how they master the treatment, and their views on how to optimize communication with health services and the potential of telemedicine.</p> <p>Methods</p> <p>We used an inductive research strategy and conducted semi-structured interviews with eleven patients established in home dialysis. Our focus was the patients' experiences with home dialysis, and our theoretical reference was patients' empowerment through telemedicine solutions. Three informants had home haemodialysis (HHD); eight had peritoneal dialysis (PD), of which three had automated peritoneal dialysis (APD); and five had continuous ambulatory peritoneal dialysis (CAPD). The material comprises all PD-patients in the catchment area capable of being interviewed, and all known HHD-users in Norway at that time.</p> <p>Results</p> <p>All of the interviewees were satisfied with their choice of home dialysis, and many experienced a normalization of daily life, less dominated by disease. They exhibited considerable self-management skills and did not perceive themselves as ill, but still required very close contact with the hospital staff for communication and follow-up. When choosing a dialysis modality, other patients' experiences were often more influential than advice from specialists. Information concerning the possibility of having HHD, including knowledge of how to access it, was not easily available. Especially those with dialysis machines, both APD and HHD, saw a potential for telemedicine solutions.</p> <p>Conclusions</p> <p>As home dialysis may contribute to a normalization of life less dominated by disease, the treatment should be organized so that the potential for home dialysis can be fully exploited. Pre-dialysis information should be unbiased and include access to other patients' experiences. Telemedicine may potentially facilitate a communication-based follow-up and improve safety within the home setting, making it easier to choose and live with home dialysis.</p
The SNAPSHOT study protocol : SNAcking, Physical activity, Self-regulation, and Heart rate Over Time
Peer reviewedPublisher PD
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
The 10th Biennial Hatter Cardiovascular Institute workshop: cellular protection—evaluating new directions in the setting of myocardial infarction, ischaemic stroke, and cardio-oncology
Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury
An approach to analyse the specific impact of rapamycin on mRNA-ribosome association
<p>Abstract</p> <p>Background</p> <p>Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background.</p> <p>Methods</p> <p>We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation.</p> <p>Results</p> <p>High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug.</p> <p>Conclusion</p> <p>The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.</p
Electrical Impedance of Acupuncture Meridians: The Relevance of Subcutaneous Collagenous Bands
Background: The scientific basis for acupuncture meridians is unknown. Past studies have suggested that acupuncture meridians are physiologically characterized by low electrical impedance and anatomically associated with connective tissue planes. We are interested in seeing whether acupuncture meridians are associated with lower electrical impedance and whether ultrasound-derived measures – specifically echogenic collagenous bands- can account for these impedance differences. Methods/Results: In 28 healthy subjects, we assessed electrical impedance of skin and underlying subcutaneous connective tissue using a four needle-electrode approach. The impedances were obtained at 10 kHz and 100 kHz frequencies and at three body sites- upper arm (Large Intestine meridian), thigh (Liver), and lower leg (Bladder). Meridian locations were determined by acupuncturists. Ultrasound images were obtained to characterize the anatomical features at each measured site. We found significantly reduced electrical impedance at the Large Intestine meridian compared to adjacent control for both frequencies. No significant decrease in impedance was found at the Liver or Bladder meridian. Greater subcutaneous echogenic densities were significantly associated with reduced impedances in both within-site (meridian vs. adjacent control) and between-site (arm vs. thigh vs. lower leg) analyses. This relationship remained significant in multivariabl
Possible Race and Gender Divergence in Association of Genetic Variations with Plasma von Willebrand Factor: A Study of ARIC and 1000 Genome Cohorts
The synthesis, secretion and clearance of von Willebrand factor (VWF) are regulated by genetic variations in coding and promoter regions of the VWF gene. We have previously identified 19 single nucleotide polymorphisms (SNPs), primarily in introns that are associated with VWF antigen levels in subjects of European descent. In this study, we conducted race by gender analyses to compare the association of VWF SNPs with VWF antigen among 10,434 healthy Americans of European (EA) or African (AA) descent from the Atherosclerosis Risk in Communities (ARIC) study. Among 75 SNPs analyzed, 13 and 10 SNPs were associated with VWF antigen levels in EA male and EA female subjects, respectively. However, only one SNP (RS1063857) was significantly associated with VWF antigen in AA females and none was in AA males. Haplotype analysis of the ARIC samples and studying racial diversities in the VWF gene from the 1000 genomes database suggest a greater degree of variations in the VWF gene in AA subjects as compared to EA subjects. Together, these data suggest potential race and gender divergence in regulating VWF expression by genetic variations
- …