17 research outputs found

    Gram Negative Wound Infection in Hospitalised Adult Burn Patients-Systematic Review and Metanalysis-

    Get PDF
    BACKGROUND: Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. METHODS: Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. PRIMARY FINDINGS: Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84). INTERPRETATION: Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.peer-reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Interactions between four species in a complex wildlife: livestock disease community : implications for Mycobacterium bovis maintenance and transmission

    Get PDF
    Livestock diseases such as bovine tuberculosis can have considerable negative effects on human health and economic activity. Wildlife reservoirs often hinder disease eradication in sympatric livestock populations. Therefore, quantifying interactions between wildlife and livestock is an important aspect of understanding disease persistence. This study was conducted on an extensive cattle farm in southwest Spain, where cattle, domestic pigs, wild boar and red deer are considered to be part of a tuberculosis host community. We tested the hypothesis that the frequency of both types of interactions would be greater at food and water sites, due to the aggregation of individuals from multiple species at these locations. We measured direct and indirect interactions between individuals using GPS and proximity loggers. Over 57,000 direct interactions were recorded over a 2-year period, of which 875 (1.5 %) occurred between different species and 216 (0.38 %) occurred between wildlife and livestock. Most direct and indirect interactions occurred at water sites. Over 90 % of indirect interactions between wildlife and livestock took place within the estimated 3-day environmental survival time of Mycobacterium bovis in this habitat. Red deer home ranges and daily activity patterns revealed significant spatial and temporal overlaps with cattle, particularly in autumn. Suids and red deer also cross the farm boundary regularly, introducing a between-farm interaction risk. The infrequent occurrence of direct interactions between individuals from different species suggests that they are unlikely to be the sole mode of disease transmission and that indirect interactions may play an important role

    The emergence of multifrequency force microscopy

    Get PDF
    Atomic force microscopy uses the deflection of a cantilever with a sharp tip to examine surfaces, and conventional dynamic force microscopy involves the excitation and detection of a single frequency component of the tip’s motion. Information about the properties of a sample is, however, encoded in the motion of the probe and the dynamics of the cantilever are highly nonlinear. Therefore, information included in the other frequency components is irreversibly lost. Multifrequency force microscopy involves the excitation and/or detection of several frequencies of the probe’s oscillation, and has the potential to overcome limitations in spatial resolution and acquisition times of conventional force microscopes. It could also provide new applications in fields such as energy storage and nanomedicine. Here we review the development of multifrequency force microscopy methods, highlighting the five most prominent approaches. We also examine the range of applications offered by the technique, which include mapping the flexibility of proteins, imaging the mechanical vibrations of carbonbased resonators, mapping ion diffusion, and imaging the subsurface of cells.We are grateful for financial support from the Ministerio de Ciencia e Innovación (CSD2010-00024, MAT2009-08650).Peer reviewe
    corecore