1,429 research outputs found

    Ring current effects: Factors affecting the NMR chemical shift of molecules adsorbed on porous carbons

    Get PDF
    Nuclear magnetic resonance (NMR) spectroscopy is increasingly being used to study the adsorption of molecules in porous carbons, a process which underpins applications ranging from electrochemical energy storage to water purification. Here we present density functional theory (DFT) calculations of the nucleus-independent chemical shift (NICS) near various sp2-hybridized carbon fragments to explore the structural factors that may affect the resonance frequencies observed for adsorbed species. The domain size of the delocalized electron system affects the calculated NICSs, with larger domains giving rise to larger chemical shieldings. In slit pores, overlap of the ring current effects from the pore walls is shown to increase the chemical shielding. Finally, curvature in the carbon sheets is shown to have a significant effect on the NICS. The trends observed are consistent with existing NMR results as well as new spectra presented for an electrolyte adsorbed on carbide-derived carbons prepared at different temperatures.A.C.F., J.M.G., and C.P.G. acknowledge the Sims Scholarship (A.C.F.), EPSRC (via the Supergen consortium; J.M.G.), and the EU ERC (via an Advanced Fellowship to C.P.G.) for funding. CDC synthesis at Drexel University was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award #ER46473. V.P. acknowledges funding from the German Federal Ministry for Research and Education (BMBF) in support of the nanoEES3D project (Award 03EK3013) as part of the strategic funding initiative energy storage framework and thanks Prof. Eduard Arzt (INM) for his continuing support. Mohamed Shamma and Boris Dyatkin (Drexel University) are thanked for their support in the synthesis of CDC material. DFT calculations were performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service, provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/jp502387

    Methods for estimating the case fatality ratio for a novel, emerging infectious disease.

    No full text
    During the course of an epidemic of a potentially fatal disease, it is important that the case fatality ratio be well estimated. The authors propose a novel method for doing so based on the Kaplan-Meier survival procedure, jointly considering two outcomes (death and recovery), and evaluate its performance by using data from the 2003 epidemic of severe acute respiratory syndrome in Hong Kong, People's Republic of China. They compare this estimate obtained at various points in the epidemic with the case fatality ratio eventually observed; with two commonly quoted, naïve estimates derived from cumulative incidence and mortality statistics at single time points; and with estimates in which a parametric mixture model is used. They demonstrate the importance of patient characteristics regarding outcome by analyzing subgroups defined by age at admission to the hospital

    Gradual acquisition of immunity to severe malaria with increasing exposure

    Get PDF
    Previous analyses have suggested that immunity to non-cerebral severe malaria due to Plasmodium falciparum is acquired after only a few infections, whereas longitudinal studies show that some children experience multiple episodes of severe disease, suggesting that immunity may not be acquired so quickly. We fitted a mathematical model for the acquisition and loss of immunity to severe disease to the age distribution of severe malaria cases stratified by symptoms from a range of transmission settings in Tanzania, combined with data from several African countries on the age distribution and overall incidence of severe malaria. We found that immunity to severe disease was acquired more gradually with exposure than previously thought. The model also suggests that physiological changes, rather than exposure, may alter the symptoms of disease with increasing age, suggesting that a later age at infection would be associated with a higher proportion of cases presenting with cerebral malaria regardless of exposure. This has consequences for the expected pattern of severe disease as transmission changes. Careful monitoring of the decline in immunity associated with reduced transmission will therefore be needed to ensure rebound epidemics of severe and fatal malaria are avoided

    Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries

    Get PDF
    Background: As malaria prevalence declines in many parts of the world due to widescale control efforts and as drug-resistant parasites begin to emerge, a quantitative understanding of human movement is becoming increasingly relevant to malaria control. However, despite its importance, significant knowledge gaps remain regarding human movement, particularly in sub-Saharan Africa. Methods: A quantitative survey of human movement patterns was conducted in four countries in sub-Saharan Africa: Mali, Burkina Faso, Zambia, and Tanzania, with three to five survey locations chosen in each country. Questions were included on demographic and trip details, malaria risk behaviour, children accompanying travellers, and mobile phone usage to enable phone signal data to be better correlated with movement. A total of 4352 individuals were interviewed and 6411 trips recorded. Results: A cluster analysis of trips highlighted two distinct traveller groups of relevance to malaria transmission: women travelling with children (in all four countries) and youth workers (in Mali). Women travelling with children were more likely to travel to areas of relatively high malaria prevalence in Mali (OR = 4.46, 95 % CI = 3.42–5.83), Burkina Faso (OR = 1.58, 95 % CI = 1.23–1.58), Zambia (OR = 1.50, 95 % CI = 1.20–1.89), and Tanzania (OR = 2.28, 95 % CI = 1.71–3.05) compared to other travellers. They were also more likely to own bed nets in Burkina Faso (OR = 1.77, 95 % CI = 1.25–2.53) and Zambia (OR = 1.74, 95 % CI = 1.34 2.27), and less likely to own a mobile phone in Mali (OR = 0.50, 95 % CI = 0.39–0.65), Burkina Faso (OR = 0.39, 95 % CI = 0.30–0.52), and Zambia (OR = 0.60, 95 % CI = 0.47–0.76). Malian youth workers were more likely to travel to areas of relatively high malaria prevalence (OR = 23, 95 % CI = 17–31) and for longer durations (mean of 70 days cf 21 days, p < 0.001) compared to other travellers. Conclusions: Women travelling with children were a remarkably consistent traveller group across all four countries surveyed. They are expected to contribute greatly towards spatial malaria transmission because the children they travel with tend to have high parasite prevalence. Youth workers were a significant traveller group in Mali and are expected to contribute greatly to spatial malaria transmission because their movements correlate with seasonal rains and hence peak mosquito densities. Interventions aimed at interrupting spatial transmission of parasites should consider these traveller groups

    A model of parity-dependent immunity to placental malaria

    Get PDF
    C1 - Journal Articles RefereedPlasmodium falciparum placental infection during pregnancy is harmful for both mother and child. Protection from placental infection is parity-dependent, that is, acquired over consecutive pregnancies. However, the infection status of the placenta can only be assessed at delivery. Here, to better understand the mechanism underlying this parity-dependence, we fitted a model linking malaria dynamics within the general population to observed placental histology. Our results suggest that immunity resulting in less prolonged infection is a greater determinant of the parity-specific patterns than immunity that prevents placental sequestration. Our results also suggest the time when maternal blood first flows into the placenta is a high-risk period. Therefore, preventative strategies implementable before or early in pregnancy, such as insecticide-treated net usage in women of child-bearing age or any future vaccine, could substantially reduce the number of women who experience placental infection

    New Insights into the Structure of Nanoporous Carbons from NMR, Raman, and Pair Distribution Function Analysis

    Get PDF
    The structural characterization of nanoporous carbons is a challenging task as they generally lack long-range order and can exhibit diverse local structures. Such characterization represents an important step toward understanding and improving the properties and functionality of porous carbons, yet few experimental techniques have been developed for this purpose. Here we demonstrate the application of nuclear magnetic resonance (NMR) spectroscopy and pair distribution function (PDF) analysis as new tools to probe the local structures of porous carbons, alongside more conventional Raman spectroscopy. Together, the PDFs and the Raman spectra allow the local chemical bonding to be probed, with the bonding becoming more ordered for carbide-derived carbons (CDCs) synthesized at higher temperatures. The ring currents induced in the NMR experiment (and thus the observed NMR chemical shifts for adsorbed species) are strongly dependent on the size of the aromatic carbon domains. We exploit this property and use computer simulations to show that the carbon domain size increases with the temperature used in the carbon synthesis. The techniques developed here are applicable to a wide range of porous carbons and offer new insights into the structures of CDCs (conventional and vacuum-annealed) and coconut shell-derived activated carbons.A.C.F., J.M.G., C.M., P.K.A, E.K.H., and C.P.G. acknowledge the Sims Scholarship (A.C.F.), EPSRC (via the Supergen consortium, J.M.G.), and the EU ERC (via an Advanced Fellowship to C.P.G.) for funding. C.M. and P.K.A. acknowledge the School of the Physical Sciences of the University of Cambridge for funding through an Oppenheimer Research Fellowship. P.K.A. acknowledges a Junior Research Fellowship from Gonville and Caius College, Cambridge. A.C.F. and J.M.G. thank the NanoDTC Cambridge for travel funding. M.A., M.Z., and V.P. acknowledge funding from the German Federal Ministry for Research and Education (BMBF) in support of the nanoEES3D project (Award Number 03EK3013) as part of the strategic funding initiative energy storage framework and kindly thank Prof. Arzt (INM) for his continuing support. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Daan Frenkel for his contributions to this work and Boris Dyatkin for comments on the manuscript.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0321

    Neurite outgrowth inhibitory levels of organophosphates induce tissue transglutaminase activity in differentiating N2a cells: evidence for covalent adduct formation

    Get PDF
    Organophosphate compounds (OPs) induce both acute and delayed neurotoxic effects, the latter of which is believed to involve their interaction with proteins other than acetylcholinesterase. However, few OP-binding proteins have been identified that may have a direct role in OP-induced delayed neurotoxicity. Given their ability to disrupt Ca2+ homeostasis, a key aim of the current work was to investigate the effects of sub-lethal neurite outgrowth inhibitory levels of OPs on the Ca2+-dependent enzyme tissue transglutaminase (TG2). At 1–10 µM, the OPs phenyl saligenin phosphate (PSP) and chlorpyrifos oxon (CPO) had no effect cell viability but induced concentration-dependent decreases in neurite outgrowth in differentiating N2a neuroblastoma cells. The activity of TG2 increased in cell lysates of differentiating cells exposed for 24 h to PSP and chlorpyrifos oxon CPO (10 µM), as determined by biotin-cadaverine incorporation assays. Exposure to both OPs (3 and/or 10 µM) also enhanced in situ incorporation of the membrane permeable substrate biotin-X-cadaverine, as indicated by Western blot analysis of treated cell lysates probed with ExtrAvidin peroxidase and fluorescence microscopy of cell monolayers incubated with FITC-streptavidin. Both OPs (10 µM) stimulated the activity of human and mouse recombinant TG2 and covalent labelling of TG2 with dansylamine-labelled PSP was demonstrated by fluorescence imaging following SDS-PAGE. A number of TG2 substrates were tentatively identified by mass spectrometry, including cytoskeletal proteins, chaperones and proteins involved protein synthesis and gene regulation. We propose that the elevated TG2 activity observed is due to the formation of a novel covalent adduct between TG2 and OPs

    1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice

    Get PDF
    BACKGROUND: Human medulloblastomas exhibit diverse molecular pathology. Aberrant hedgehog signalling is found in 20-30% of human medulloblastomas with largely unknown metabolic consequences. METHODS: Transgenic mice over-expressing smoothened (SMO) receptor in granule cell precursors with high incidence of exophytic medulloblastomas were sequentially followed up by magnetic resonance imaging (MRI) and characterised for metabolite phenotypes by ¹H MR spectroscopy (MRS) in vivo and ex vivo using high-resolution magic angle spinning (HR-MAS) ¹H MRS. RESULTS: Medulloblastomas in the SMO mice presented as T₂ hyperintense tumours in MRI. These tumours showed low concentrations of N-acetyl aspartate and high concentrations of choline-containing metabolites (CCMs), glycine, and taurine relative to the cerebellar parenchyma in the wild-type (WT) C57BL/6 mice. In contrast, ¹H MRS metabolite concentrations in normal appearing cerebellum of the SMO mice were not different from those in the WT mice. Macromolecule and lipid ¹H MRS signals in SMO medulloblastomas were not different from those detected in the cerebellum of WT mice. The HR-MAS analysis of SMO medulloblastomas confirmed the in vivo ¹H MRS metabolite profiles, and additionally revealed that phosphocholine was strongly elevated in medulloblastomas accounting for the high in vivo CCM. CONCLUSIONS: These metabolite profiles closely mirror those reported from human medulloblastomas confirming that SMO mice provide a realistic model for investigating metabolic aspects of this disease. Taurine, glycine, and CCM are potential metabolite biomarkers for the SMO medulloblastomas. The MRS data from the medulloblastomas with defined molecular pathology is discussed in the light of metabolite profiles reported from human tumours
    corecore