4,743 research outputs found
Phonon renormalisation in doped bilayer graphene
We report phonon renormalisation in bilayer graphene as a function of doping.
The Raman G peak stiffens and sharpens for both electron and hole doping, as a
result of the non-adiabatic Kohn anomaly at the point. The bilayer has
two conduction and valence subbands, with splitting dependent on the interlayer
coupling. This results in a change of slope in the variation of G peak position
with doping, which allows a direct measurement of the interlayer coupling
strength.Comment: 5 figure
A philosophical context for methods to estimate origin-destination trip matrices using link counts.
This paper creates a philosophical structure for classifying methods which estimate origin-destination matrices using link counts. It is claimed that the motivation for doing so is to help real-life transport planners use matrix estimation methods effectively, especially in terms of trading-off observational data with prior subjective input (typically referred to as 'professional judgement'). The paper lists a number of applications that require such methods, differentiating between relatively simple and highly complex applications. It is argued that a sound philosophical perspective is particularly important for estimating trip matrices in the latter type of application. As a result of this argument, a classification structure is built up through using concepts of realism, subjectivity, empiricism and rationalism. Emphasis is put on the fact that, in typical transport planning applications, none of these concepts is useful in its extreme form. The structure is then used to make a review of methods for estimating trip matrices using link counts, covering material published over the past 30 years. The paper concludes by making recommendations, both philosophical and methodological, concerning both practical applications and further research
Liquid-Phase Exfoliation of Graphite into Single- and Few-Layer Graphene with α-Functionalized Alkanes.
Graphene has unique physical and chemical properties, making it appealing for a number of applications in optoelectronics, sensing, photonics, composites, and smart coatings, just to cite a few. These require the development of production processes that are inexpensive and up-scalable. These criteria are met in liquid-phase exfoliation (LPE), a technique that can be enhanced when specific organic molecules are used. Here we report the exfoliation of graphite in N-methyl-2-pyrrolidinone, in the presence of heneicosane linear alkanes terminated with different head groups. These molecules act as stabilizing agents during exfoliation. The efficiency of the exfoliation in terms of the concentration of exfoliated single- and few-layer graphene flakes depends on the functional head group determining the strength of the molecular dimerization through dipole-dipole interactions. A thermodynamic analysis is carried out to interpret the impact of the termination group of the alkyl chain on the exfoliation yield. This combines molecular dynamics and molecular mechanics to rationalize the role of functionalized alkanes in the dispersion and stabilization process, which is ultimately attributed to a synergistic effect of the interactions between the molecules, graphene, and the solvent.We acknowledge funding from the European Commission through the Graphene Flagship, the FET project UPGRADE (GA-309056), the Agence Nationale de la Recherche through the LabEx project Nanostructures in Interaction with their Environment (ANR-11-LABX-0058_NIE), the International Center for Frontier Research in Chemistry (icFRC), the Belgian National Fund for Scientific Research (FNRS-FRFC), the ERC synergy grant Hetero2D, ERC PoC HiGRAPHINK, and the Engineering and Physical Sciences Research Council grants EP/K01711X/1, EP/K017144/1, and EP/L016087/1.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.jpclett.6b0126
A new Raman metric for the characterisation of graphene oxide and its derivatives
Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D’ peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D’ peak by using its overtone the 2D’. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D’ peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity
Atomically thin quantum light-emitting diodes
Transition metal dichalcogenides are optically active, layered materials promising for fast optoelectronics and on-chip photonics. We demonstrate electrically driven single-photon emission from localized sites in tungsten diselenide and tungsten disulphide. To achieve this, we fabricate a light-emitting diode structure comprising single-layer graphene, thin hexagonal boron nitride and transition metal dichalcogenide mono- and bi-layers. Photon correlation measurements are used to confirm the single-photon nature of the spectrally sharp emission. These results present the transition metal dichalcogenide family as a platform for hybrid, broadband, atomically precise quantum photonics devices.European Research Council (Grant ID: PHOENICS), Engineering and Physical Sciences Research Council (Grant ID: EP/N010345/1
Cognitive networks: brains, internet, and civilizations
In this short essay, we discuss some basic features of cognitive activity at
several different space-time scales: from neural networks in the brain to
civilizations. One motivation for such comparative study is its heuristic
value. Attempts to better understand the functioning of "wetware" involved in
cognitive activities of central nervous system by comparing it with a computing
device have a long tradition. We suggest that comparison with Internet might be
more adequate. We briefly touch upon such subjects as encoding, compression,
and Saussurean trichotomy langue/langage/parole in various environments.Comment: 16 page
Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2
The linear dispersion relation in graphene[1,2] gives rise to a surprising
prediction: the resistivity due to isotropic scatterers (e.g. white-noise
disorder[3] or phonons[4-8]) is independent of carrier density n. Here we show
that acoustic phonon scattering[4-6] is indeed independent of n, and places an
intrinsic limit on the resistivity in graphene of only 30 Ohm at room
temperature (RT). At a technologically-relevant carrier density of 10^12 cm^-2,
the mean free path for electron-acoustic phonon scattering is >2 microns, and
the intrinsic mobility limit is 2x10^5 cm^2/Vs, exceeding the highest known
inorganic semiconductor (InSb, ~7.7x10^4 cm^2/Vs[9]) and semiconducting carbon
nanotubes (~1x10^5 cm^2/Vs[10]). We also show that extrinsic scattering by
surface phonons of the SiO2 substrate[11,12] adds a strong temperature
dependent resistivity above ~200 K[8], limiting the RT mobility to ~4x10^4
cm^2/Vs, pointing out the importance of substrate choice for graphene
devices[13].Comment: 16 pages, 3 figure
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques
We study the exciton valley relaxation dynamics in single-layer MoS2 by a combination of two nonequilibrium optical techniques: time-resolved Faraday rotation and time-resolved circular dichroism. The depolarization dynamics, measured at 77 K, exhibits a peculiar biexponential decay, characterized by two distinct time scales of 200 fs and 5 ps. The fast relaxation of the valley polarization is in good agreement with a model including the intervalley electron-hole Coulomb exchange as the dominating mechanism. The valley relaxation dynamics is further investigated as a function of temperature and photoinduced exciton density. We measure a strong exciton density dependence of the transient Faraday rotation signal. This indicates the key role of exciton-exciton interactions in MoS2 valley relaxation dynamics
Joule heating effects in nanoscale carbon-based memory devices
This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.One of the emerging candidates to bridge the gap between fast but volatile DRAM and non-volatile but slow storage devices is tetrahedral amorphous carbon (ta-C) based memory [1]-[3]. This offers a very good scalability, data retention and sub-5ns switching [2], [3]. Amorphous carbon memory devices can be electrically and optically switched from a high resistance state (HRS) to a low resistance state (LRS) [4]. The electrical conduction in the LRS is thought to be through sp2 clusters that form a conductive filament [4].This work was funded by the EU research & innovation project CareRAMM, no. 30998
- …
