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We report phonon renormalisation in bilayer graphene as a function of doping. The Raman G
peak stiffens and sharpens for both electron and hole doping, as a result of the non-adiabatic Kohn
anomaly at the Γ point. The bilayer has two conduction and valence subbands, with splitting
dependent on the interlayer coupling. This results in a change of slope in the variation of G peak
position with doping, which allows a direct measurement of the interlayer coupling strength.
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Graphene is the latest carbon allotrope to be discov-
ered [1, 2, 3, 4, 5]. Near-ballistic transport at room tem-
perature and high carrier mobilities[2, 3, 4, 5, 6, 7, 8],
make it a potential material for nanoelectronics [9, 10,
11], especially for high frequency applications. It is
now possible to produce areas exceeding thousands of
square microns by means of micro-mechanical cleavage of
graphite. An ongoing effort is being devoted to large scale
deposition and growth on different substrates of choice.

Unlike single layer graphene (SLG), where electrons
disperse linearly as massless Dirac fermions[1, 2, 3, 4, 5],
bilayer graphene (BLG) has two conduction and valence
bands, separated by γ1, the interlayer coupling[12, 13].
This was measured to be∼0.39eV by angle resolved pho-
toelectron spectroscopy[14]. A gap between valence and
conduction bands could be opened and tuned by an ex-
ternal electric field (∼100meV for∼1013cm−2doping)[15,
16], making BLG a tunable-gap semiconductor.

Graphene can be identified in terms of number and
orientation of layers by means of elastic and inelas-
tic light scattering, such as Raman[17] and Rayleigh
spectroscopies[18, 19]. Raman spectroscopy also allows
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FIG. 1: (color online). Experimental setup. The black dot-
ted box on SiO2 indicates the polymer electrolyte (PEO +
LiClO4). The left inset shows an SEM image of the SLG and
BLG. Scale bar: 4µm. The right inset, the 2D Raman band

monitoring of doping and defects[4, 20, 21, 22, 23, 24, 25].
Indeed, Raman spectroscopy is a fast and non-destructive
characterization method for carbons[26]. They show
common features in the 800-2000 cm−1 region: the
G and D peaks, around 1580 and 1350 cm−1, respec-
tively. The G peak corresponds to the E2g phonon at
the Brillouin zone center (Γ). The D peak is due to
the breathing modes of sp2 atoms and requires a defect
for its activation[27, 28, 29]. The most prominent fea-
ture in SLG is the second order of the D peak: the 2D
peak[17]. This lies at ∼ 2700 cm−1 and involves phonons
at K+∆q[17, 23]. ∆q depends on the excitation energy,
due to double-resonance, and the linear dispersion of the
phonons around K[17, 29, 30]. 2D is a single peak in
SLG, whereas it splits in four in BLG, reflecting the evo-
lution of the band structure[17]. The 2D peak is always
seen, even when no D peak is present, since no defects
are required for overtone activation.

In SLG, the effects of back and top gating on G-
peak position (Pos(G)) and Full Width at Half Max-
imum (FWHM(G)) were reported in Refs[20, 21, 24].
Pos(G) increases and FWHM(G) decreases for both elec-
tron and hole doping. The G peak stiffening is due to the
non-adiabatic removal of the Kohn-anomaly at Γ[20, 31].
FWHM(G) sharpening is due to blockage of phonon de-
cay into electron-hole pairs due to the Pauli exclusion
principle, when the electron-hole gap is higher than the
phonon energy[20, 32], and saturates for a Fermi shift
bigger than half phonon energy[20, 21, 32]. A simi-
lar behavior is observed for the LO-G− peak in metal-
lic nanotubes[33], for the same reasons. The conceptu-
ally different BLG band structure is expected to renor-
malize the phonon response to doping differently from
SLG[13, 34]. Here we prove this, by investigating the
effect of doping on the BLG G and 2D peaks. The G
peak of doped BLG was recently investigated[35], and
reproduced that of SLG, due to the very low doping
range(∼ 5 × 1012cm−2), not enough to cross the sec-
ond BLG subband. Here we reach much higher values
(∼ 5×1013cm−2), probing the further renormalisation re-
sulting from crossing to the second BLG subband.

We recently demonstrated a SLG top-gated by poly-
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FIG. 2: (color online). Raman spectra of (a) SLG; (b) BLG
at several VTG. Red lines fits to the experimental data.

mer electrolyte[24], able to span a large doping range,
up to∼5×1013cm−2[24]. This is possible because the
nanometer thick Debye layer[24, 36, 37] gives a much
higher gate capacitance compared to the usual 300nm
SiO2 back gate[5]. We apply here this approach to BLG.
Fig.1 shows the scheme of our experiment. A sample is
produced by micromechanical cleavage of graphite. This
consists of a SLG extending to a BLG, as proven by the
characteristic SLG and BLG 2D peaks in the inset of
Fig.1[17]. An Au electrode is then deposited by pho-
tolithography covering both SLG and BLG, Fig.1. Top
gating is achieved by using a solid polymer electrolyte
consisting of LiClO4 and polyethelyne oxide (PEO) in
the ratio 0.12:1[24]. The gate voltage is applied by plac-
ing a platinum electrode in the polymer layer. Note that
the particular shape of our sample, consisting of a BLG,
with a protruding SLG, ensures the top gate to be effec-
tively applied to both layers at the same time. This would
not necessarily be the case for a monolithic BLG, where,
due to screening effects, the gate would give a separate
evolution of the Raman spectra of the top and bottom
layers[38]. Measurements are done with a WITEC con-
focal (X50 objective) spectrometer with 600 lines/mm
grating, 514.5 nm excitation, at<1mW to avoid heat-
ing. For a given top gate voltage, VTG, spectra are
recorded after 10 mins. Figs.2(a,b) plot the spectra as
a function of VTG. We use Voigt functions to fit the G
peak in both SLG and BLG. The SLG 2D band is fit-
ted to one Lorentzian. The BLG 2D band is fitted to
four Lorentzians,2D1A,2D1B ,2D2A,2D2B [17], Fig.1. As
previously discussed, two of these, 2D1A and 2D2A, are
much stronger[17]. Thus, we focus on these.

To get a quantitative understanding, it is necessary
to convert VTG into a EF shift. For electrolytic gat-
ing, the chemical potential is eVTG = ESLGF + eφSLG =
EBLGF + eφBLG. The electrostatic potential φ = ne

CT G
is

determined by the geometrical capacitance CTG and car-
rier concentration n (e is the electron charge), while EF /e
by the chemical (quantum) capacitance of graphene. For

FIG. 3: (color online). Pos(G) for (a) SLG; (c) BLG as a
function of Fermi energy. FWHM(G) of (b) SLG;(d) BLG as
a function of Fermi energy. Solid lines:theoretical predictions.

SLG, nSLG = µE2
F , where µ = gsgv

4πγ2 = 1
π(~vF )2 , gs=gv=2

are spin and valley degeneracies, γ =
√

3
2 γ0a, with γ0 the

nearest-neighbor tight binding parameter, a the graphene
lattice parameter, and vF is the Fermi velocity. Thus:

eV TG = EF + νE2
F (1)

For BLG[13, 39, 40] nBLG=µ[γ1EF + E2
F ] for EF < γ1

and nBLG = 2µE2
F for EF > γ1. Thus:

eV TG = (1 + νγ1)EF + νE2
F , EF < γ1 (2)

= EF + 2νE2
F , EF > γ1

where ν = e2

πCT G(~vF )2 . We take CTG = 2.2 ×
10−6Fcm−2[33], and γ1=0.39eV constant with doping
(since its variation for n up to∼1013cm−2 is <5%)[14,
15]). Eqs.1,2 then give EF as a function of VTG.

Fig.3 plots the resulting Pos(G), FWHM(G) as a func-
tion of EF . In SLG, Pos(G) does not increase up to
EF ∼0.1eV (∼ ~ω0/2), where ω0 is the frequency of the
E2g phonon in the undoped case (~ω0/(2π~c)=Pos(G0),
with c the speed of light), and then increases with EF .
Fig.3b,d indicate that in SLG and BLG, FWHM(G) de-
creases for both electron and hole doping, as expected
since phonons decay into real electron-hole pairs when
EF < ~ω0/2[20]. Fig.3c plots Pos(G) of BLG.(i) Pos(G)
does not increase until EF ∼0.1eV (∼ ~ω0/2).(ii) Be-
tween 0.1 and 0.4eV, the BLG slope R=dPos(G)

dEF
is smaller

than the SLG one.(iii) A kink is observed in Fig.3b at
EF ∼0.4eV.(iv)Beyond EF >0.4eV the slope is larger
than in SLG.(v) The kink position does not significantly
depend on γ1 used to convert VTG in EF (e.g. a ∼ 66%
change in γ1 modifies EF by ∼ 6%).

These trends can be explained by considering the ef-
fects doping on the phonons:(i) a change of the equilib-
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rium lattice parameter with a consequent “static” stiff-
ening/softening, ∆Pos(G)st;(ii) the onset of “dynamic”
effects beyond the adiabatic Born-Oppenheimer approx-
imation, that modify the phonon dispersion close to the
Kohn anomalies, ∆Pos(G)dyn[20, 31]. Thus, the total
phonon renormalization can be written as[20, 31]:

Pos(GEF
)−Pos(G0) = ∆Pos(G) = ∆Pos(G)st+∆Pos(G)dyn

(3)
For SLG, we compute ∆Pos(G)st by converting EF into
the corresponding electron density nSLG, then using Eq.3
of Ref.[31]. For BLG, we assume nBLG equally dis-
tributed on the two layers, each behaving as a SLG with
an electron concentration nBLG/2. Eq.3 of Ref.[31] is
then used to compute ∆Pos(G)st for BLG. ∆Pos(G)dyn

is calculated from the phonon self-energy Π[41]:

~∆Pos(G)dyn = Re[Π(EF )−Π(EF = 0)]. (4)

The electron-phonon coupling (EPC) contribution to
FWHM(G) is given by[41, 42, 43]:

FWHM(G)EPC = 2Im[Π(EF )] (5)

The self-energy for the E2g mode at Γ in SLG is[20, 31]:

Π(EF )SLG = α′
∫ ∞
−∞

f(ε)− f(−ε)
2ε+ ~ω0 + iδ

|ε|dε, (6)

while for BLG it is given by [13]:

Π(EF )BLG = α′
∫ ∞

0

γ2kdk
∑
s,s′

∑
j,j′

φ+
jj′

× [f(εsjk)− f(εs′j′k)][εsjk − εs′j′k]
(εsjk − εs′j′k)2 − (~ω0 + iδ)2

(7)

where α′ = ~AucEPC(Γ)2

πMω0(~vF )2 , Auc = 5.24 Å2 is the graphene
unit-cell area, M is the carbon atom mass, f(ε) =
1/[exp( ε−EF

kBT
) + 1] is the Fermi-Dirac distribution, δ is a

broadening factor accounting for charge inhomogeneity,
EPC(Γ) is the electron phonon coupling[46]. s = ±1 and
s′=±1 label the conduction (+1) and valence (-1) bands,
while j = 1, 2 and j′=1,2 label the two parabolic sub-
bands. εsjk is computed from Eq.2.8 of Ref.[13], and φ+

jj′

is given by Eq.3.1 of Ref.[13]. By using Eqs.6,7 in Eqs.4,5,
we get ∆Pos(G)dyn,FWHM(G)EPC for SLG and BLG.

To compare Eqs.3,5 with the experimental data,
we use α′ = 4.4 × 10−3(obtained from the DFT
values of EPC(Γ) and vF [20, 30]), the experi-
mental ~ω0 for SLG and BLG, and T=300K.
δ is fitted from the experimental FWHM(G) to
FWHM(G)=FWHM(G)EPC+FWHM(G)0, with
FWHM(G)0 a constant accounting for non-EPC effects
(e.g. resolution and anharmonicity). For SLG (BLG)
we get δ = 0.13eV (0.03eV) and FWHM(G)0=4.3cm−1

(5.1cm−1). These δ values are then used to compute
Pos(G). Note that the relation between n and EF

FIG. 4: (color online). Phonon renormalization for BLG: (I)
EF < ~ω0, (II) ~ω0 < EF < γ1, (III) EF > γ1. Blue and
red arrows correspond respectively to positive and negative
contributions to Π. Solid and dashed arrows correspond to
interband and intraband processes respectively.

implies that charge inhomogeneity causes different EF
broadening in SLG and BLG (e.g. δn∼1012cm−2 would
give 0.13eV and 0.03eV in SLG and BLG,respectively).

The solid lines in Fig. 3 are the theoretical Pos(G)
and FWHM(G) trends. The experimental and theoret-
ical FWHM(G) are in excellent agreement, as expected
since the latter was fitted to the former. The theoreti-
cal Pos(G) captures the main experimental features. In
particular, the flat dependence for |Ef | < 0.1 eV in both
SLG and BLG, and the kink at ∼ 0.4 eV in BLG. This
kink is the most striking difference between SLG and
BLG. It is the signature of the second subband filling in
BLG. Indeed, a shift of EF , by acting on f(ε) in Eq.7,
modifies the type and number of transitions contributing
to Π. The only transitions giving a positive contribu-
tion to Π are those for which |εs,j,k − εs′,j′,k| < ~ω0,
i.e. a subset of those between (s = −1; j = 1) and
(s = 1; j = 1) (interband transitions, solid blue lines in
Fig. 4). Interband transitions with |εs,j,k− εs′,j′,k| > ~ω0

(solid red lines in Fig. 4) and all intraband (between
(s = ±1; j = 1) and (s = ±1, j = 2), dashed red lines in
Fig. 4) contribute to Π as negative terms. It is convenient
to distinguish three different cases: (I), |EF | < ~ω0, (II)
~ω0 < |EF | < γ1, and (III) |EF | > γ1. For simplicity let
us assume EF > 0 (the same applies for EF < 0).In case
(I), positive contributions from interband transitions are
suppressed, and new negative intraband transitions are
created. This results in strong phonon softening at low
temperatures[35]. At T=300K, these effects are blurred
by the fractionary occupation of the electronic states,
resulting in an almost doping independent phonon en-
ergy (see Fig.3b). In case (II), a shift of EF suppresses
negative interband contributions and creates new neg-
ative intraband transitions. By counting their number
and relative weight (given by Φjj′/(εs,j,k − εs′,j′,k)), one
can show that interband transitions outweight intraband
ones, resulting in phonon hardening. Case (III) is simi-
lar to (II), with the difference that the second subband
filling suppresses negative intraband transitions at k∼K,
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FIG. 5: (a) Ratio of 2D and G peaks intensities for SLG (solid
circles) and BLG (open circles) as a function of n. (b) Position
of 2D for SLG (solid circles) and 2D main components for
BLG (open circles) as a function of n.

further enhancing the phonon hardening. It is also pos-
sible to demonstrate that, for T and δ → 0, the slope of
∆Pos(G)dyn just above EF = γ1 is double than that
just below. Thus, the kink in Fig.3 is a direct mea-
surement of the interlayer coupling strength from Raman
spectroscopy.

In SLG the intensity ratio of 2D and G, I(2D)/I(G),
has a strong dependence on doping[24]. Fig.5a plots
I(2D)/I(G) as a function of doping. For BLG we take the
highest amongst 2D1A and 2D2A. The SLG dependence
reproduces our previous results[24]. However, we find an
almost constant ratio in BLG. Fig.5b plots the doping de-
pendence of Pos(2D) in SLG, and Pos(2D1A), Pos(2D2A)
in BLG. To a first approximation, this is governed by
lattice relaxation, which explains the overall stiffening
for hole doping and softening for electron doping[24]. A
quantitative understanding is yet to emerge, and beyond
DFT many body effects need be considered.

To conclude, we have simultaneously measured the be-
havior of optical phonons in single and bilayer graphene
as a function of doping. In the latter, the G peak renor-
malizes as the Fermi energy moves from the 1st to the 2nd
subband, allowing a direct measurement of γ1 ∼0.4eV.
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