6,191 research outputs found

    Ultrasonic Attenuation Measurements in Jet-Engine Titanium Alloys

    Get PDF
    In the inspection of titanium material intended for use in aircraft engines, a number of unusual phenomena are observed, including significant fluctuations of the amplitude and phase of back-surface echoes and of the amplitudes of pulse-echo signals from nominally identical flaws[1]. Practical implications include a broadening of the probability of detection curves and difficulties in determining the ultrasonic attenuation, a parameter used in interpreting flaw response data. Incorrect determination of attenuation can lead to errors in distance-gain corrections and hence in estimates of the magnitude of the flaw response. In this paper, we report experiments designed to elucidate the mechanisms responsible for these signal fluctuations

    Electrostatically gated membrane permeability in inorganic protocells

    Get PDF
    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization

    Structural and Electronic Effects of X-ray Irradiation on Prototypical [M(COD)Cl]â‚‚ Catalysts

    Get PDF
    X-ray characterization techniques are invaluable for probing material characteristics and properties, and have been instrumental in discoveries across materials research. However, there is a current lack of understanding of how X-ray-induced effects manifest in small molecular crystals. This is of particular concern as new X-ray sources with ever-increasing brilliance are developed. In this paper, systematic studies of X-ray–matter interactions are reported on two industrially important catalysts, [Ir(COD)Cl]2 and [Rh(COD)Cl]2, exposed to radiation in X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) experiments. From these complementary techniques, changes to structure, chemical environments, and electronic structure are observed as a function of X-ray exposure, allowing comparisons of stability to be made between the two catalysts. Radiation dose is estimated using recent developments to the RADDOSE-3D software for small molecules and applied to powder XRD and XPS experiments. Further insights into the electronic structure of the catalysts and changes occurring as a result of the irradiation are drawn from density functional theory (DFT). The techniques combined here offer much needed insight into the X-ray-induced effects in transition-metal catalysts and, consequently, their intrinsic stabilities. There is enormous potential to extend the application of these methods to other small molecular systems of scientific or industrial relevance

    Global WEIRDing: Transitions in Wild Plant Knowledge and Treatment Preferences in Congo Hunter-Gatherers

    Get PDF
    Cultures around the world are converging as populations become more connected. On the one hand this increased connectedness can promote the recombination of existing cultural practices to generate new ones, but on the other it may lead to the replacement of traditional practices and global WEIRDing. Here we examine the process and causes of changes in cultural traits concerning wild plant knowledge in Mbendjele BaYaka hunter–gatherers from Congo. Our results show that the BaYaka who were born in town reported knowing and using fewer plants than the BaYaka who were born in forest camps. Plant uses lost in the town-born BaYaka related to medicine. Unlike the forest-born participants, the town-born BaYaka preferred Western medicine over traditional practices, suggesting that the observed decline of plant knowledge and use is the result of replacement of cultural practices with the new products of cumulative culture

    Effect of genotyping error in model-free linkage analysis using microsatellite or single-nucleotide polymorphism marker maps

    Get PDF
    Errors while genotyping are inevitable and can reduce the power to detect linkage. However, does genotyping error have the same impact on linkage results for single-nucleotide polymorphism (SNP) and microsatellite (MS) marker maps? To evaluate this question we detected genotyping errors that are consistent with Mendelian inheritance using large changes in multipoint identity-by-descent sharing in neighboring markers. Only a small fraction of Mendelian consistent errors were detectable (e.g., 18% of MS and 2.4% of SNP genotyping errors). More SNP genotyping errors are Mendelian consistent compared to MS genotyping errors, so genotyping error may have a greater impact on linkage results using SNP marker maps. We also evaluated the effect of genotyping error on the power and type I error rate using simulated nuclear families with missing parents under 0, 0.14, and 2.8% genotyping error rates. In the presence of genotyping error, we found that the power to detect a true linkage signal was greater for SNP (75%) than MS (67%) marker maps, although there were also slightly more false-positive signals using SNP marker maps (5 compared with 3 for MS). Finally, we evaluated the usefulness of accounting for genotyping error in the SNP data using a likelihood-based approach, which restores some of the power that is lost when genotyping error is introduced

    Estimation in a multiplicative mixed model involving a genetic relationship matrix

    Get PDF
    Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments

    State of the art: refinement of multiple sequence alignments

    Get PDF
    BACKGROUND: Accurate multiple sequence alignments of proteins are very important in computational biology today. Despite the numerous efforts made in this field, all alignment strategies have certain shortcomings resulting in alignments that are not always correct. Refinement of existing alignment can prove to be an intelligent choice considering the increasing importance of high quality alignments in large scale high-throughput analysis. RESULTS: We provide an extensive comparison of the performance of the alignment refinement algorithms. The accuracy and efficiency of the refinement programs are compared using the 3D structure-based alignments in the BAliBASE benchmark database as well as manually curated high quality alignments from Conserved Domain Database (CDD). CONCLUSION: Comparison of performance for refined alignments revealed that despite the absence of dramatic improvements, our refinement method, REFINER, which uses conserved regions as constraints performs better in improving the alignments generated by different alignment algorithms. In most cases REFINER produces a higher-scoring, modestly improved alignment that does not deteriorate the well-conserved regions of the original alignment
    • …
    corecore