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 26 
Social networks in modern societies are highly structured, usually involving frequent 27 

contact with a small number of unrelated ‘friends’1. However, contact network structures 28 

in traditional small-scale societies, especially hunter-gatherers, are poorly characterised. 29 

We developed a portable wireless sensing technology (motes) to study within-camp 30 

proximity networks among Agta and BaYaka hunter-gatherers in fine detail. We show 31 

that hunter-gatherer social networks exhibit signs of increased efficiency2 for potential 32 

information exchange. Increased network efficiency is achieved through investment in a 33 

few strong links among non-kin ‘friends’ connecting unrelated families. We show that 34 

interactions with non-kin appear in childhood, creating opportunities for collaboration 35 

and cultural exchange beyond family at early ages. We also show that strong friendships 36 

are more important than family ties in predicting levels of shared knowledge among 37 

individuals. We hypothesise that efficient transmission of cumulative culture3-6 may have 38 

shaped human social network and contributed to our tendency to extend networks 39 

beyond kin and form strong non-kin ties. 40 

We studied in-camp proximity networks (within and between households) as a proxy for 41 

social interactions in two hunter-gatherer populations from Africa and Southeast Asia. We 42 

developed a portable wireless sensing technology (motes; Figure 1) to record all dyadic 43 

interactions within a radius of approximately 3 meters at 2-minute intervals for 15 hours a day 44 

(05:00-20:00) over a week, in six Agta camps in the Philippines (200 individuals, 7210 recorded 45 

dyadic interactions) and three BaYaka camps in Congo (132 individuals, 3397 dyadic 46 

interactions; see Table S1 with descriptive statistics for all camp networks). We built high-47 

resolution proximity networks mapping the totality of close-range interactions within each camp. 48 

In hunter-gatherers (who lack technology-aided communication), close proximity is an indicator 49 

of joint activities such as foraging7, parental care8 and information exchange4. 50 



 

To investigate a possible relationship between social structure and cultural exchange, 51 

we estimated the ‘global network efficiency’2 of our proximity networks. Global network 52 

efficiency is a measure of how the properties of a network can facilitate information flow 53 

amongst its individuals (nodes) irrespective of whether exchange of information actually occurs, 54 

and is therefore a structural property independent from the nature of the information flow. For 55 

example, when planning a new town, engineers may want to compare alternative configurations 56 

of road systems and select the one minimising average distance or travelling time between any 57 

two points, irrespective of mode of transport. Global network efficiency provides a measure of 58 

ease of transmission across a network, and has been applied to studies of social networks as 59 

well as power grids, phone networks, neural systems and transportation networks2 among 60 

others. 61 

To estimate global network efficiency, we first built weighted social networks using our 62 

motes proximity data from Agta and BaYaka camps (Fig.2A and Fig. S1), and subdivided the 63 

networks into three decreasing levels of relatedness: close kin (parents, children, siblings, 64 

partners), extended family (grandparents, grandchildren, aunts, uncles, nieces, nephews, first 65 

cousins, parents-in-law, siblings-in-law) and non-kin (see Methods for details of kin 66 

categorisation, and Tables S2 and S3 for percentages of links for each kin category and age 67 

groups). We estimated the contribution of each relatedness level to global network efficiency by 68 

comparing our hunter-gatherer network structures to randomly permuted networks (the baseline 69 

for estimation of efficiencies of real networks). Our randomisation procedure does not modify 70 

the total number of links (edges), sum of all link weights (number of recorded interactions for 71 

each dyad) and degree (number of links) of each node, but randomly shuffles links among 72 

nodes within each level of relatedness. For example, when randomising the non-kin network, we 73 

preserve the number of non-kin links from each individual (number of friends), but redistribute 74 

their target nodes (identity of their friends). Since our networks are weighted (as each dyad may 75 

have been in close proximity multiple times during the one-week interval), random reshuffling of 76 



 

links also changes the strength of friendships. For each of the three categories of relatedness, 77 

we created an ensemble of 1000 randomised graphs (see Methods for procedures). The 78 

average global efficiency of the randomised ensemble was then compared to the global 79 

efficiency of the corresponding observed networks for each camp. 80 

Our analyses show that randomisation of interactions among either close kin or 81 

extended family (including affinal kin) does not affect the global efficiency of hunter-gatherer 82 

networks. In contrast, randomisation of non-kin relationships (friends) drastically reduces global 83 

network efficiency (Fig.2B, and Fig. S2 for other camps) both in the Congo and the Philippines 84 

camps (Fig. 2C). The reason is that randomisation of non-kin links homogenises their weights, 85 

eliminating strong friendships from networks. This is not observed in the case of randomisation 86 

of close kin and distant kin links, which do not exhibit the same levels of the heterogeneity in 87 

strength of links. Therefore, increased global efficiency in our networks results from investing in 88 

a few strong ‘close friends’ in addition to an extended net of social acquaintances, or a 89 

combination of strong and weak ties9. Controlling for household in randomisations does not 90 

change the results (Fig. S3). In summary, a large number of homogeneous links to all unrelated 91 

individuals caused by randomisation reduced global network efficiency. In agreement with 92 

classic studies of ‘small-world networks’10, our results show that only a few ‘shortcuts’ 93 

(friendships) connecting closely-knit clusters (households consisting mostly of close kin) suffice 94 

to significantly reduce the average path length or distance between any two points across the 95 

whole network, thus reducing redundancy and the cost of maintaining strong links with a large 96 

number of unrelated individuals. Since unrelated individuals often live in different households, 97 

they provide a small number of reliable ‘shortcuts’ between households. Both the Agta and 98 

BaYaka had between one to four unrelated ‘close friends’ whom they interact with as frequently 99 

as with close kin (Fig. 3). This number is consistent across ages and camps, and with the 100 

finding that people in Western societies are in close contact with an average of four friends1. 101 

Friendships have also been shown to be particularly important in unpredictable environments, 102 



 

and as a special case of reciprocal help11, which is central to hunter-gatherers7. We further 103 

demonstrated the importance of friendships to cultural transmission through a mixed-effects 104 

logistic regression of levels of shared plant knowledge in a dyad against a series of predictors, 105 

using our Congo dataset12. The most important predictor was close friendship, with odds of 106 

shared knowledge between close friends of 1.82 (95% CI: 1.32-2.5) , 1.48 (1.26-1.74) between 107 

mother-offspring, 1.46 (1.2-1.78) between spouses, and 1.31 (1.11-1.54) between siblings 108 

(Table S4).  109 

Inequality in link weight distributions is consistently higher among non-kin than among 110 

either close kin or extended family members, with Gini coefficients of 0.85, 0.69, 0.72 (Dinipan, 111 

Philippines), and 0.92, 0.35 and 0.63 (Ibamba, Congo) respectively (see Table S1 for Gini 112 

coefficients in other camps). Heterogeneity in the number of social ties per individual (degree) 113 

was previously reported in the Hadza13. We extend this finding to the intensity of social 114 

interactions (link strength) and demonstrate that the high heterogeneity in the intensity of non-115 

kin social ties is responsible for the increased efficiency of Agta and BaYaka social networks 116 

(see Fig. S4 for plots of tie strength distributions of non-kin, close kin and affinal kin ties for each 117 

camp). Non-kin interactions also keep transitivity (a measure of the local efficiency or clustering 118 

in networks2) consistently higher in Agta and BaYaka networks compared to equivalent 119 

randomised networks (Figure 2C; see Fig. S5 for transitivity in other camps, and Methods for 120 

details of calculations), in agreement with previous studies of Hadza hunter-gatherers13. The 121 

combination of high global and local network efficiencies in both Congo and the Philippines is a 122 

characteristic of ‘small-world networks’ that allows for efficient information flow, and has been 123 

argued to promote creativity14. 124 

We also found evidence that ‘friendships’ are formed early in childhood in both 125 

populations. Among the Agta, 27% of interactions of children aged 3 to 7 years occurred with 126 

non-kin (Fig. 4A), compared to 32% of interactions with siblings, 13% with mothers, and less 127 

than 1% with their grandmothers. Among the BaYaka, 30% of interactions of children aged 2 to 128 



 

7 were with non-kin (Fig. 4B), 30% with siblings, 17% with mothers, and 5% with grandmothers. 129 

Between ages 8-12, interactions with non-kin increased to 39% in the Agta and 35% in the 130 

BaYaka. Non-kin interactions among children aged between 2 and 12 years were age-131 

assortative (Philippines: β=26.6, P<0.001, 95% CI:14.6-38.67; Congo: β=29.3, P<0.001, 95% 132 

CI:18.7-38.8; see Methods).  133 

The origin of links with non-kin in early childhood has important implications for our 134 

understanding of human life history. We argue that our delayed maturation may facilitate social 135 

learning through cultural diffusion in play groups15, where children are frequently looked after by 136 

older children and learn through playing and imitation of role models16 (see Supplementary 137 

Video 1). In Agta and BaYaka play groups, children also establish their first friendships, which 138 

may have important consequences in adult life. We show that across age groups people have at 139 

any given time a few ‘close friends’, and this is likely to be one of the conditions for the high 140 

between-camp mobility that characterise hunter-gatherers17, who encounter around ten times 141 

more individuals over a lifetime than chimpanzees18,19. We observed that hunter-gatherer 142 

households tend to be highly mobile and unrelated to each other20,21, moving between camps on 143 

average every 22.8 days in Congo and 12.5 days in the Philippines17. It should be noted that our 144 

analyses of network efficiency focused on within-camp relationships, while between-group 145 

structuring was shown to affect cultural innovation at least in an experimental setting22. The new 146 

motes technology could therefore be extended to studies of between-band interactions, and 147 

performed in parallel with direct measures of cultural transmission in the same networks23. 148 

The observed higher network efficiency of Agta and BaYaka social networks can also 149 

impose trade-offs. Friendship choices among urban contemporary Americans, for instance, 150 

have been shown to affect not only information exchange but also the spread of diseases24. 151 

Such trade-off may be particularly problematic among hunter-gatherers whose population sizes 152 

and local genetic diversity are typically low. However, real-world networks are known to be 153 

dynamic and adapt to the infection risk status of particular nodes by breaking ties and 154 



 

temporarily reducing transmission efficiency25. For example, we observed a rewiring of proximity 155 

networks in one Agta camp, which broke down into two units during a measles outbreak. In 156 

addition, although our analyses focused on network efficiency and its potential impact on 157 

information flow, other aspects of hunter-gatherer social networks may be shaped by other 158 

demands.  For example, affinal kinship links may play a potential role in cooperation, coalition 159 

formation and marriage rules26, and sex assortativity in offspring care, foraging and access to 160 

resources7,30.   161 

We propose that high global efficiency of social networks is important to multiple aspects 162 

of human cumulative culture, including the spread of social norms17, diffusion of technological 163 

innovations22, among others. Efficient hunter-gatherers networks depend on the existence of a 164 

few close friends linking households and enabling the flow of information among them. The role 165 

of friendship ties in promoting cumulative culture in hunter-gatherers is further supported by the 166 

fact that close friends have increased shared plant knowledge as compared to spouses, siblings 167 

and parent-offspring dyads in our Congo dataset. ‘Small-world’ properties (such as the 168 

combination of high global and local efficiency) and the tendency to share and exchange 169 

information with unrelated individuals are features previously identified in online communities28 170 

and even the World Wide Web1,2,29. We have presented evidence that those properties are also 171 

found in two hunter-gatherer populations. Details of the evolutionary links among network 172 

structures, strong friendships and cumulative culture require further investigation. However, the 173 

evidence presented in our study suggests an explanation for why people are keen to socialise, 174 

cooperate and exchange information with unknown individuals, from isolated tribes seeking 175 

contact30 to global-scale social networks on the World Wide Web. 176 

 177 

 178 

Materials and Methods 179 

 180 



 

Experimental Design 181 

  182 

1. Sample. We studied two populations of hunter-gatherers: Agta (Philippines) and Mbedjele 183 

BaYaka pygmies (Congo). Research started in 2011, while proximity motes data were collected 184 

between March and September 2014. 185 

1.1. Agta. Agta hunter-gatherers subsist on terrestrial, river and coastal marine resources. They 186 

live in North East Luzon within the Northern Sierra Madre Natural Park, Municipality of Palanan, 187 

Isabela and speak Agta Paranan (an Austronesian Language). Population is estimated in 1000 188 

individuals in Palanan31. We studied 200 individuals of all ages from six camps. They live in 189 

small bands of 49±22 people on average. Some camps have semi-permanent houses while in 190 

others households mover more regularly between camps. Across camps, 80.4% of food is 191 

produced by foraging (fishing, hunting and gathering) and the remaining by cultivation. The Agta 192 

trade some fish and vegetables for rice and occasionally engage in cash labour (between 0 and 193 

12% of their time, depending on camp). Rice is consumed in 44% of meals, but there is 194 

significant variation across households (from 12.5% to 75%). Therefore, activity and production 195 

patterns still reflect a foraging lifestyle, while diet composition depend on the fraction of rice 196 

traded by households32,33. 197 

1.2. Mbendjele BaYaka. The Mbendjele (a Bantu language) are a subgroup of the BaYaka 198 

pygmy hunter-gatherers. BaYaka subsistence includes hunting, trapping, fishing, gathering and 199 

honey collecting. They span across Congo-Brazzaville and Central African Republic forests, 200 

where their population is around 30,000. Our study population lives in Sangha and Likuoala. We 201 

studied 132 Mbendjele of all ages from three camps (with 10-60 individuals; mean=44±24). 202 

Nuclear families live in langos (multi-family camps consisting of ‘fumas’ or huts). Some live near 203 

mud roads opened by logging companies and move between camps depending on food 204 

resources, trading some meat and forest products for farmer products and occasionally 205 

engaging in cash labour.  206 



 

  207 

2. Portable wireless sensing technology (motes). 208 

2.1. Motes. Recent progress in embedded electronics has led to compact (50 mm*35 mm*15 209 

mm with casing) and affordable wearable devices with sensors. For this study, we selected 210 

devices supporting TinyOS, an operating system developed at the University of California, 211 

Berkeley. Our device (Fig. 1) is a customised UCMote Mini with main processor, wireless 212 

communication module, memory storage unit and a four-week battery (software-optimised for 213 

low energy consumption). We deployed 200 motes in the Philippines and 200 in Congo. 214 

2.2. Software. We wrote the embedded software in C and nesC following an iterative process to 215 

optimise parameters (frequency of beacons, strength of wireless communications, length of 216 

sleep phases). Each device sends beacons every 2 minutes, receiving beacons from other 217 

devices within a 3-meter range and storing them in long-term memory. At the end of the 218 

experiment, device memories were downloaded via a PC side application written in JAVA. 219 

2.3. Range and calibration. Radio links were adjusted to allow recording of other radio signals 220 

within 3 meters. A specific radio transmission technique (low power listening) was used to 221 

reduce battery usage. We calibrated radio links by testing devices on a range of situations and 222 

environments, in the UK and in the field. 223 

2.4. Motes utilisation. After being waterproofed with cling film, motes were sealed into 224 

wristbands or armbands (for babies). We studied one camp at a time in the Philippines and 225 

Congo. After explaining methods and discussing data anonymity through presentations and 226 

posters in local languages, each participant agreeing to participate and signing the informed 227 

consent form received a mote. Each motes received an ID number and coloured string. 228 

Individuals wore motes uninterruptedly from four to nine days depending on the camp, but only 229 

data collected between 05:00 and 20:00 were analysed. Individuals arriving at camp during the 230 

experiment were given a mote and an entry time; those leaving camp before the end of the 231 

experiment had their exit time recorded. A small compensation (thermal bottle or cooking 232 



 

utensils) was given to each participant at the end. We regularly checked for armband swaps. 233 

Mote numbers were also checked upon return, alterations recorded and adjustments made prior 234 

to data processing. 235 

2.5. Ethical approval. Research project and fieldwork were approved by the UCL Ethics 236 

Committee in 2011 for the period between 2011 and 2016 (code 3086/003, Leverhulme Trust 237 

grant RP2011-R-045, 2011-2016) and carried out after informed consent was obtained from all 238 

participants. In order to establish a fair process of understanding within the communities, we 239 

presented posters with pictures and drawings explaining the purpose of our research project. 240 

Subsequently, procedures and the technology (motes) were described to the whole community 241 

in multiple presentations. Later, we obtained consent from tribal elders, and then from each 242 

individual; parents gave consents for their children. Only 2-3 individuals from each camp 243 

preferred not to participate in the study and were excluded. 244 

2.6. Data recovery. Raw data were run through a stringent data-processing system in Python to 245 

leverage the filtering power of MySQL databases and prevent data corruption. Following basic 246 

checks, data were matched to ID numbers (preserving anonymity) and to start-stop times of 247 

each mote. We then created a matrix containing the number of recorded beacons for all 248 

possible dyads (i.e. frequency of close-range interactions) in each camp. A proportional 249 

correction was made for late entries or early exits. 250 

2.6. Motes validation (focal follows). To validate our methodology, we compared motes and 251 

observational data from eight children aged between 3-5 years. We conducted ‘focal follows’ for 252 

a total of nine hours over three non-constitutive days, observing all individuals present within 253 

three meters of each child every 30 seconds34. This produces 1080 observational points per 254 

child over three days (one every 30 seconds), compared to an average of 3150 emitted motes 255 

points over one week (1 every 2 minutes). However, since multiple ties are captured with each 256 

observation or motes recording, there is on average 3850 mote points compared to 3080 257 

observational points per child. 258 



 

To compare motes and focal follows data, we produced average proportions of time 259 

spent by children with specific kin categories. Differences between averages were minimal, as 260 

well as the distribution of observations with specific kin types. Motes recorded an average of 261 

34% of time spent with mothers, 11% with fathers, 24% with siblings and 6%, 7% and 23% for 262 

grandparents, other kin (0.125< r < 0.25) and non-kin (r < 0.125), respectively. Focal follows 263 

recorded 37% of time spent with mothers, 19% with fathers, 24 % with siblings and 2 %, 7% and 264 

24% of their time with grandparents, other kin and non-kin, respectively. Small differences are 265 

most likely caused by motes covering a full week, and focal follows only nine hours. Note that 266 

the total proportions do not add up to 100% as multiple people can be found simultaneously 267 

within the three-meter range. Overall, this demonstrates that motes data accurately represent 268 

proximity patterns. 269 

2.7. Motes validation (camp scans). We also ran camp scans four times a day for a week in 270 

some camps. In the Philippines, people were found together ‘resting in silence’ (activity 271 

categories ‘resting together’ plus ‘sleeping close to each other during the day’) only 5.6% of the 272 

time. The most frequent activity categories were ‘chatting’ (25.7%), playing together (16%), 273 

looking after children together (11.5%), cooperating in food-related activities such as hunting, 274 

gathering, food processing, cooking and eating (17.4%); together, they represent 70% of 275 

activities done in close proximity. The remaining 24.4% also refer to social interactions and joint 276 

activities (building houses, fixing tools, washing clothes, tending fire, trading, logging, 277 

participating in religious ceremonies). Therefore people in close proximity are generally involved 278 

in social interactions and joint activities.   279 

 280 

3. Genealogical data and kin definition. We collected genealogies over three generations for 281 

all individuals, and built relatedness matrices based on kin categories (mother, father, son, 282 

daughter, spouse, brother, sister, uncle, aunt, niece, nephew, cousin, grandparents, 283 

grandchildren, parents-in-law, children-in-law, brother/sister-in law, other kin, other affines, and 284 



 

unrelated individuals). We defined ‘primary kin’ as parents, children, siblings and partners. 285 

‘Extended family’ included distant kin (grandparents, grandchildren, aunt, uncle, niece, nephew, 286 

first cousins, parents-in-law, siblings-in-law). ‘Unrelated individuals’ are all other individuals, also 287 

including more remotely related individuals (such as the ego’s wife’s brother’s wife’s sister) 288 

eligible for marriage in these populations, and therefore better interpreted as friends than 289 

extended family members. 290 

 291 

Statistical Analyses 292 

4. Multi-level modelling of age assortativity. We tested for age assortativity in dyadic 293 

interactions using a mixed-effects linear regression. The number of recorded interactions for a 294 

dyad was the response variable. To control for pseudoreplication we defined dyad, ego ID and 295 

camp as hierarchically structured random effects, and ‘same age’ as a binary (yes/no) fixed 296 

effect. Each individual was allocated an age group: infant (under 2 years old); child (2-12 years); 297 

teenager (13-18 years); reproductive adults (18-45 years); and post-reproductive adults (46 and 298 

over). If both individuals in a dyad were in the same age group, the variable ‘same age’ was 299 

given the value ‘yes’.  300 

 301 

5. Dyadic predictors of shared plant knowledge. We ran a mixed-effects logistic regression 302 

of shared plant knowledge12 in dyads (binary response; shared=1, non-shared=0) on various 303 

binary predictors. If a dyad consisted of a father-offspring pair, the predictor ‘father’ was coded 304 

as ‘1’ and otherwise as ‘0’; the same for predictors ‘mother’, ‘sibling’, ‘spouse’, ‘sibling’s primary 305 

kin’, ‘siblings distant kin’, and ‘close friend’. ‘Close friend’ was any dyad whose weight (link 306 

strength) was higher than the average weight of a close kin dyad in the same camp. Ego ID, 307 

‘same camp’ and ‘same age group’ (five-year intervals) were entered as random factors. Our 308 

sample consists of dyads for which both data on proximity and plant knowledge were available. 309 

A total 824 dyads were analysed, 16 of which were close friends. Each was assessed for 310 



 

shared knowledge 33 times (the number of plants each individuals was asked about), totalling a 311 

sample of 27192 regression data points. 312 

  313 

6. Social Network Analysis. We used proximity data to build nine undirected weighted graphs 314 

G describing the social interaction networks for each of camps (Figure 1A and Fig. S1). The N 315 

nodes of each network represent the individuals in the camp, while the undirected link (i,j) 316 

between node i and j indicates the presence of proximity interactions between individual i and 317 

individual j. The weight wij of link (i,j) is the frequency of interaction between two individuals, 318 

measured by the number of recorded interactions (beacons) between their motes. The weights 319 

ranged from the smallest possible non-zero value of wij=238 to wij=20,876 beacons. Each graph 320 

is described by the N x N symmetric and weighted adjacency matrix W={wij}, with i,j=1,2,…,N. 321 

Entry wij is equal to zero if individuals i and j had no close-range social contacts, and by 322 

definition also when i=j. For each graph, an unweighted adjacency matrix W={wij}, with 323 

i,j=1,2,…,N, can be defined by setting wij=1 if wij is different from zero, and wij=0 otherwise. The 324 

total number of links in the graph is equal to = ∑ ∑ . The degree ki of a node i is 325 

defined as ki = ∑ , and is equal to the number of its first neighbours, while its strength si is 326 

equal to the sum of node weights si =	∑ . Finally, the average node degree is <ki>=2K/N. 327 

6.1. Link weight distribution and Gini coefficient. The heterogeneity in the distribution of weights 328 

among the links of a graph can be quantified by the Gini coefficient g, an index used in 329 

economics and ecology to measure inequalities of a given resource among individuals35. It is 330 

obtained by comparing the Lorenz curve of a ranked empirical distribution (i.e. a curve that 331 

shows, for the bottom x% of individuals, the cumulative percentage y% of the total size) with the 332 

line of perfect equality. In our case, we obtain the Lorenz curve by plotting the percentage y% of 333 

the total weights held by the x% of links considered, sorted in increasing value of weights. The 334 

Gini coefficient ranges from a minimum value of zero, when all individuals are equal, to a 335 



 

theoretical maximum value of 1 in a population in which every individual except one has a size 336 

of zero. 337 

6.2. Calculating network efficiency. Network global efficiency of graph G (Figure 1A and Fig. S1) 338 

was calculated as follows. First, we created weighted networks using the motes data. This 339 

means that a dyad observed 100 times in close proximity is connected by a link 100 times 340 

stronger than a dyad only observed once in close proximity. Our procedure assumes that a 341 

frequent or strong link reflects a ‘close’ link, i.e. the two points are separated by a short distance 342 

in the network. We implement this relationship by defining the length of a link as the inverse of 343 

its weight. Weighted shortest paths were computed for each couple of nodes in G, assuming 344 

that the length lij of an existing link (i,j) is equal to the inverse of the weight wij, and using 345 

standard algorithms to solve the all-shortest-path problem in weighted graphs. The distance dij 346 

between nodes i and j is defined as the sum of the link lengths over the shortest path 347 

connecting i and j. The efficiency εij in the communication from i to j over the graph is then 348 

assumed to be inversely proportional to the shortest path length, i.e. εij=1/dij. When there is no 349 

path linking i to j we have dij=+∞ and the efficiency in the communication between i and j is set 350 

equal to 0. The global efficiency of graph G is defined as the average of εij over all couples of 351 

nodes:  352 
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In the case of unweighted graphs, global efficiency E assumes values from 0 to 1, while 354 

in weighted graphs the values of E(G) depend on the typical weights associated to the links. It is 355 

therefore very useful to compare the global efficiency of a given weighted network to the global 356 

efficiency of a randomised version of the network. 357 



 

6.3. Network randomisation. We constructed randomisations for each of the nine undirected 358 

weighted graphs G describing a proximity network. The aim is to randomise each graph by 359 

maintaining some of its original properties, such as the total number of links, the sum of all the 360 

weights, and the degree of each node, and then randomising such links and nodes at each level 361 

of relatedness. To that purpose we divided the ties into close kin, extended family, and lastly 362 

non-kin. Then, for each camp, we considered first a network with only close-kin links, and we 363 

compared it to its randomised versions. The randomisation procedure consists in the following 364 

two stages. 365 

Stage A: changing the adjacency matrix of close-kin ties. 366 

1) Take a node i and a close-kin node j. 367 

2) Choose with uniform probability a node l in a close-kin relation with node i (excluding node j), 368 

and a node m in a close-kin relation with node l. 369 

3) If there are no links already between node i and node m, or between node j and node l, and if 370 

nodes i and m are close kin, and node j and l are also close kin, swap the two links by 371 

connecting node i to node m and node j to node l. 372 

4) If any of the conditions in point 3 are not verified, repeat the search with another couple of 373 

nodes l and m, up to M times. If after M times the conditions have not been fulfilled, the link 374 

between node i and node j is left unaltered. 375 

Stage B: redistributing weights to the new adjacency matrix. 376 

5) Each node i has a total number of beacons equal to its strength si (the sum of the weights of 377 

all its links). Each of these beacons is randomly reallocated with uniform probability to one of the 378 

ki new neighbours. 379 

Steps (1-5) are repeated for each node and for each of its links. 380 

Next, we considered the network with close kin and extended family links, and then randomised 381 

only extended family links according to the procedure above. Finally, we considered the network 382 

with close kin, extended family and non-kin links, and randomised only non-kin links. For each 383 



 

of the three cases, we used M=100 iterations and we created an ensemble of 1000 randomised 384 

graphs. The average global efficiency obtained for the ensemble of randomised graphs was 385 

compared to the global efficiency of the real networks at the three relatedness levels for each 386 

camp. We also performed randomisations preserving household structure, where for each level 387 

of dyadic relatedness (close kin, extended family and non-kin) we checked whether the original 388 

dyad was within or between households, and only allowed randomisation to occur respectively 389 

within or between households. Results remained mostly unchanged (Fig. S3). 390 

6.4. Network Transitivity. Since our networks are weighted, we have measured transitivity (a 391 

measure of local efficiency) as the total strength of the triads found in our network. To do 392 

this, we have calculated the third power of the weighted adjacency matrix. The element i,j of 393 

the resulting matrix A3 measures the strength of the walks of length 3 starting from node i 394 

and reaching node j. In this way, the i-th element of the diagonal of matrix A3 gives the total 395 

strength of a closed triad starting and ending at node i. Summing all the elements of the 396 

diagonal (i.e. computing the trace of A3) and dividing by 6, since each triad is counted twice 397 

(once in each direction) for each of its three nodes, we obtain the total strength of the triads, 398 

i.e. the transitivity of the weighted network: 399 

= 16  

As in the case of global efficiency, the values of network transitivity of the hunter-gatherer 400 

real networks have been compared to the averages obtained for randomised ensembles. 401 

 402 

7. Data availability. The data that support the findings of this study are available from the 403 

corresponding author (ABM) upon request.  404 
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 507 
Fig. 1. Pictures of motes (left), and of Agta hunter-gatherers (Philippines) wearing motes 508 

in armbands (right). Credit: Rodolph Schlaepfer and Sylvain Viguier. 509 

 510 
  511 

Fig. 2. Global network efficiency and clustering depend on non-kin ties. (A) Diagrams (G 512 

graphs) of networks for two camps in the Philippines (top: Dinipan, N=33 people) and Congo 513 

(bottom: Ibamba, N=47 people). Nodes: individuals. Node colours: households. Red ties 514 

represent close kin or extended family, and blue ties connect unrelated individuals. Tie 515 

thickness: intensity of relationship (number of recorded close-range interactions). Graphs 516 

display the 60% strongest links. (B) Global network efficiency (y axis) was compared among 517 

close kin, extended families and non-kin (x axis). Global network efficiency (a measure of ease 518 

of information flow across a network; see main text and methods for formal definition) was 519 

compared in real (solid circles) and randomised networks of the same size and properties (open 520 

circles; see Materials and Methods for randomisation procedure). Randomisation of non-kin ties 521 

in real networks causes dramatic reduction in global efficiency, in contrast to randomisation of 522 

close kin and extended family ties. We calculated averages over 1000 different randomisations. 523 

Error bars for randomisations represent standard error of mean, but are small and 524 

imperceptible. All differences are statistically significant (P<0.001). Ratios of global network 525 

efficiencies, E, and transitivities, T, in real vs. randomised networks for each Agta and BaYaka 526 

camp (coloured bars). Ratios of global efficiencies and transitivities are greater than 1 (vertical 527 

line) in all camps, indicating that real camp networks have increased global efficiency and 528 

transitivity in comparison to equivalent random networks. All ratios are significantly greater than 529 

1 (P<0.001). 530 

 531 



 

Fig. 3. Frequency of close-range interactions with close kin and unrelated individuals. 532 

Top row, Philippines (all camps); bottom row, Congo (all camps). (A) children (2-12 years), (B) 533 

teenagers (13-17) (C) reproductive adults (18-45), (D) post-reproductive adults (46 or over). 534 

Red bars: from left to right, proportion of interactions with mother, father and siblings (A and B); 535 

or sons, daughters and siblings (C and D). Blue bars: proportion of interactions with unrelated 536 

individuals ranked from left to right by frequency of interactions, up to the 10th strongest 537 

relationship. Spouses and affines were excluded. Shaded area represents the range of 538 

frequency of interactions with close kin. In all plots, error bars represent plus and minus one 539 

standard deviation. In both camps and across all age groups, people interact with from one to 540 

four unrelated individuals as closely as with their close kin. 541 

  542 

  543 

Fig. 4. Proportion of interactions by age group and relatedness category. Colours 544 

represent relatedness categories (close kin: mother, father, siblings, spouse, offspring; 545 

extended family: grandparents, grandchildren, aunt, uncle, niece, nephew, first cousins, 546 

parents-in-law, siblings-in-law; non-kin: all other individuals). (A) Philippines, all camps. (B) 547 

Congo, all camps. From an early age, weaned children (aged 2-7) exhibit a large frequency of 548 

interactions with unrelated individuals in play groups (see main text). 549 

 550 

 551 

 552 
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