427 research outputs found

    Bethe-Salpeter Amplitudes and Static Properties of the Deuteron

    Get PDF
    Extended calculations of the deuteron's static properties, based on the numerical solution of the Bethe-Salpeter equation, are presented. A formalism is developed, which provides a comparative analysis of the covariant amplitudes in various representations and nonrelativistic wave functions. The magnetic and quadrupole moments of the deuteron are calculated in the Bethe-Salpeter formalism and the role of relativistic corrections is discussed.Comment: 33 pages ([aps]{revtex} style), 9 Postscript figures; (55 pages if [preprint,aps]{revtex} style is used

    The Use of Sulfasalazine in Atrophie Blanche

    Full text link
    Atrophie blanche can be a chronic condition for which there is no satisfactory treatment. Two patients with atrophie blanche who had not responded to various therapeutic modalities were given a trial of sulfasalazine 1 g three times daily. The ulcers healed within 3 months in both cases. In view of these positive results, patients should be treated with sulfasalazine to determine the efficacy of this drug in atrophie blanche.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65527/1/j.1365-4362.1990.tb02594.x.pd

    Patterning symmetry in the rational design of colloidal crystals

    Get PDF
    Colloidal particles have the right size to form ordered structures with periodicities comparable to the wavelength of visible light. The tantalizing colours of precious opals and the colour of some species of birds are examples of polycrystalline colloidal structures found in nature. Driven by the demands of several emergent technologies, efforts have been made to develop efficient, self-assembly-based methodologies for generating colloidal single crystals with well-defined morphologies. Somewhat unfortunately, these efforts are often frustrated by the formation of structures lacking long-range order. Here we show that the rational design of patch shape and symmetry can drive patchy colloids to crystallize in a single, selected morphology by structurally eliminating undesired polymorphs. We provide a proof of this concept through the numerical investigation of triblock Janus colloids. One particular choice of patch symmetry yields, via spontaneous crystallization, a pure tetrastack lattice, a structure with attractive photonic properties, whereas another one results in a colloidal clathrate-like structure, in both cases without any interfering polymorphs

    A Selective PMCA Inhibitor Does Not Prolong the Electroolfactogram in Mouse

    Get PDF
    Within the cilia of vertebrate olfactory receptor neurons, Ca(2+) accumulates during odor transduction. Termination of the odor response requires removal of this Ca(2+), and prior evidence suggests that both Na(+)/Ca(2+) exchange and plasma membrane Ca(2+)-ATPase (PMCA) contribute to this removal.In intact mouse olfactory epithelium, we measured the time course of termination of the odor-induced field potential. Replacement of mucosal Na(+) with Li(+), which reduces the ability of Na(+)/Ca(2+) exchange to expel Ca(2+), prolonged the termination as expected. However, treating the epithelium with the specific PMCA inhibitor caloxin 1b1 caused no significant increase in the time course of response termination.Under these experimental conditions, PMCA does not contribute detectably to the termination of the odor response

    Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Adenosine is the most widely used vasodilator stress agent for Cardiovascular Magnetic Resonance (CMR) perfusion studies. With the standard dose of 140 mcg/kg/min some patients fail to demonstrate characteristic haemodynamic changes: a significant increase in heart rate (HR) and mild decrease in systolic blood pressure (SBP). Whether an increase in the rate of adenosine infusion would improve peripheral and, likely, coronary vasodilatation in those patients is unknown. The aim of the present study was to assess the tolerance and safety of a high-dose adenosine protocol in patients with inadequate haemodynamic response to the standard adenosine protocol when undergoing CMR perfusion imaging.</p> <p>Methods</p> <p>98 consecutive patients with known or suspected coronary artery disease (CAD) underwent CMR perfusion imaging at 1.5 Tesla. Subjects were screened for contraindications to adenosine, and an electrocardiogram was performed prior to the scan. All patients initially received the standard adenosine protocol (140 mcg/kg/min for at least 3 minutes). If the haemodynamic response was inadequate (HR increase < 10 bpm or SBP decrease < 10 mmHg) then the infusion rate was increased up to a maximum of 210 mcg/kg/min (maximal infusion duration 7 minutes).</p> <p>Results</p> <p>All patients successfully completed the CMR scan. Of a total of 98 patients, 18 (18%) did not demonstrate evidence of a significant increase in HR or decrease in SBP under the standard adenosine infusion rate. Following the increase in the rate of infusion, 16 out of those 18 patients showed an adequate haemodynamic response. One patient of the standard infusion group and two patients of the high-dose group developed transient advanced AV block. Significantly more patients complained of chest pain in the high-dose group (61% vs. 29%, p = 0.009). On multivariate analysis, age > 65 years and ejection fraction < 57% were the only independent predictors of blunted haemodynamic responsiveness to adenosine.</p> <p>Conclusions</p> <p>A substantial number of patients do not show adequate peripheral haemodynamic response to standard-dose adenosine stress during perfusion CMR imaging. Age and reduced ejection fraction are predictors of inadequate response to standard dose adenosine. A high-dose adenosine protocol (up to 210 mcg/kg/min) is well tolerated and results in adequate haemodynamic response in nearly all patients.</p

    The potential impact of climate change on Australia's soil organic carbon resources

    Get PDF
    BACKGROUND: Soil organic carbon (SOC) represents a significant pool of carbon within the biosphere. Climatic shifts in temperature and precipitation have a major influence on the decomposition and amount of SOC stored within an ecosystem and that released into the atmosphere. We have linked net primary production (NPP) algorithms, which include the impact of enhanced atmospheric CO(2 )on plant growth, to the SOCRATES terrestrial carbon model to estimate changes in SOC for the Australia continent between the years 1990 and 2100 in response to climate changes generated by the CSIRO Mark 2 Global Circulation Model (GCM). RESULTS: We estimate organic carbon storage in the topsoil (0–10 cm) of the Australian continent in 1990 to be 8.1 Gt. This equates to 19 and 34 Gt in the top 30 and 100 cm of soil, respectively. By the year 2100, under a low emissions scenario, topsoil organic carbon stores of the continent will have increased by 0.6% (49 Mt C). Under a high emissions scenario, the Australian continent becomes a source of CO(2 )with a net reduction of 6.4% (518 Mt) in topsoil carbon, when compared to no climate change. This is partially offset by the predicted increase in NPP of 20.3% CONCLUSION: Climate change impacts must be studied holistically, requiring integration of climate, plant, ecosystem and soil sciences. The SOCRATES terrestrial carbon cycling model provides realistic estimates of changes in SOC storage in response to climate change over the next century, and confirms the need for greater consideration of soils in assessing the full impact of climate change and the development of quantifiable mitigation strategies

    Reactive community-based self-administered treatment against residual malaria transmission: study protocol for a randomized controlled trial

    Get PDF
    Background: Systematic treatment of all individuals living in the same compound of a clinical malaria case may clear asymptomatic infections and possibly reduce malaria transmission, where this is focal. High and sustained coverage is extremely important and requires active community engagement. This study explores a communitybased approach to treating malaria case contacts. Methods/design: This is a cluster-randomized trial to determine whether, in low-transmission areas, treating individuals living in the same compound of a clinical malaria case with dihydroartemisinin-piperaquine can reduce parasite carriage and thus residual malaria transmission. Treatment will be administered through the local health system with the approach of encouraging community participation designed and monitored through formative research. The trial goal is to show that this approach can reduce in intervention villages the prevalence of Plasmodium falciparum infection toward the end of the malaria transmission season. Discussion: Adherence and cooperation of the local communities are critical for the success of mass treatment campaigns aimed at reducing malaria transmission. By exploring community perceptions of the changing trends in malaria burden, existing health systems, and reaction to self-administered treatment, this study will develop and adapt a model for community engagement toward malaria elimination that is cost-effective and fits within the existing health system. Trial registration: Clinical trials.gov, NCT02878200. Registered on 25 August 2016

    Physiological Effects of Superoxide Dismutase on Altered Visual Function of Retinal Ganglion Cells in db/db Mice

    Get PDF
    Background: The C57BLKS/J db/db (db/db) mouse is a widely used type 2 diabetic animal model, and this model develops early inner retinal neuronal dysfunction beginning at 24 weeks. The neural mechanisms that mediate early stage retinal dysfunction in this model are unknown. We evaluated visual response properties of retinal ganglion cells (RGCs) during the early stage of diabetic insult (8, 12, and 20 wk) in db/db mice and determined if increased oxidative stress plays a role in impaired visual functions of RGCs in 20 wk old db/db mice. Methodology/Principal Findings: In vitro extracellular single-unit recordings from RGCs in wholemount retinas were performed. The receptive field size, luminance threshold, and contrast gain of the RGCs were investigated. Although ONand OFF-RGCs showed a different time course of RF size reduction, by 20 wk, the RF of ON- and OFF-RGCs were similarly affected. The LT of ON-RGCs was significantly elevated in 12 and 20 wk db/db mice compared to the LT of OFF-RGCs. The diabetic injury also affected contrast gains of ON- and OFF-RGCs differently. The generation of reactive oxidative species (ROS) in fresh retina was estimated by dihydroethidium. Superoxide dismutase (SOD) (300 unit/ml) was applied in Ames medium to the retina, and visual responses of RGCs were recorded for five hours. ROS generation in the retinas of db/db mice increased at 8wk and continued to progress at 20 wk of ages. In vitro application of SOD improved visual functions in 20 wk db/db mice but the SOD treatment affected ON- and OFF-RGCs differently in db/m retina
    corecore