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Abstract

Extended calculations of the deuteron’s static properties, based on the numerical
solution of the Bethe-Salpeter equation,.are presented. A formalism is developed, which
provides a comparative analysis of the covariant amplitudes in various representations
and nonrelativistic wave functions. The magnetic and quadrapole moments of the

deuteron are calculated in the Bethe-Salpeter formalism and the réle of relativistic
corrections is discussed.
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1 Introduction

A theory applicable for studying nuclear phenomena, involving high energies or momentum
transfers of a few GeV or larger, should be formulated in relativistically invariant manner.
A traditional approach to processes with nuclei, based on the norrelativistic Schrodinger
wave functions, is not adequate if a large momentum transfer "sneaks” into the nuclear
amplitudes, and the corresponding nucleon momentum p becomes large, say p > m (m is the
nucleon mass). One can extend the usage of nonrelativistic wave functions by incorporating
successively the relativistic corrections ~ (p/m)", however, it might eventually fail at some
value of p. On the other hand, the nonrelativistic approach was for some time the only one
which allowed for a detailed description of the static properties of the nuclei and low and
intermediate energy nuclear reaciions as well.

In the recent two decades, extensive studies of few-nucleon systems have been performed
within Lorentz invariant models {1, 2, 3, 4, 5]. The success of these elaborate studies allows
one to conclude that the covariant approach has now the capability to replace, at least
for few-nucleon systems, the approaches relying on nonrelativistic wave functions [6]. Most
of the phenomenological success in the relativistic treatment of few-nucleon systems has
been achieved within such models which are based on a covariant meson-nucleon theory and
corresponding dynamical equations {1, 2, 3]. In these models, the satisfactory results have
been obtained for the nucleon-nucleon (NN} scattering, the properties of the lightest nuclei,
various electromagretic and hadronic interactions with nuclei, and some advance have been
achieved for many-body nuclear systems (see e.g. discussions and further references in [3]).

The deuteron, as the simplest nuclear system, is an appealing object to be described by
the models invented in the realm of nuclear physics. There is a fair amount of experimental
information available about the deuteron’s properties themselves and reactions with the
deuteron. More interesting and precise data is expected after the start of the exciting
research program at CEBAF. Therefore, there is a possibility to compare exact theoretical
results with the experimental data in a clear way, not dimmed by extra effects, such as the
“more-then-two-body” phenomena.

Still, the relativistic approach to the deuteron is not as popular as the one utilizing
nonrelativistic wave functions {7, 8]. There are seemingly two main reasons for this. First,
the deuteron, as any other nucleus, is essentially a nonrelativistic system, since it is composed
of weakly bound massive nucleons. The bulk of the static properties of such a system
obviously can be fitted in the nourelativistic approach by adjusting the phenomenological
potential or the wave function. Besides, the experimental data for the reactions with the
deuteron is also muainly available in the nonrelativistic domain. Second, the relativistic
models, especially those based on field theory, are technically more difficult and have a more
sophisticated physical interpretation than the nonrelativistic approaches. Both these reasons,
together, define the typical pattern for the attempts devoted to promote the consistent
relativistic description of the nuclei. The corresponding works are usually highly specified
for the particular reactions or kinematic domains where the advantage of the covariant




approach can be explicitly displayed. They are offen filled with technical details uncommon
for that part of the scientific audience which is not directly involved in this research direction.
That is why this is so important to have simple and intuitively clear interpretations of the
relativistic calculations, and an explicit systematic method to compare the relativistic and
nonrelativistic resuits.

In the present work we are going to analyze the extended calculations of the static
properties of the deuteron utilizing the Bethe-Salpeter (BS) amplitudes which are recently
computed numerically {9]. The main goal of our paper is to contribute to the development
of the physical idtuition for understanding the relativistic calculations and their comparison
to the nonrelativistic calculations. Our basic idea is to compute the observable densities of
various charges {e.g., vector and axial-vector charges) in both the relativistic and the nonrel-
ativistic formalisms and to use these densities as tools to compare relativistic amplitudes and
nonrelativistic wave functions, which can not be rigorously interrelated otherwise. In doing
80 we pursue, in some sense, the goals opposite to the ones we outlined above as typical for
the approach within the covariant description of the deuteron. Another goal of our paper is
to fill some gap in the literature by giving explicit expressions relating the BS amplitudes in
difierent representations, which will help to compare the relativistic amplitudes computed
in different models. '

We calculate here the magnetic and quadrupole moments of the deuteron within the
Bethe-Salpeter formalism. The investigation of these static characteristics of the deuteron
is still an important topic in nuclear physics. In the nonrelativistic models it gives the
direct information about the tensor components in the nucleon - nucleon interaction and the
magnitude of the [) wave probability in the deuteron. However, there is an essential problemn
in fitting the experimental values of the quadrupole and magnetic moments with the same
D wave probability in the nonrelativistic calculations (cf. ref. [10] and references therein).
The efforts, aiming to solve this difficulty, go in two main directions, namely calculating
the corrections of the meson exchange currents {11, 12, 13] and taking into account the
relativistic effects {1, 2, 3, 14, 15, 16, 17]. In the conventional approach, the mesonic degrees
of freedom and relativistic effects are treated as corrections to the nonrelativistic potential
theory. It is found that, by adding these effects to the quadrupole moment, a satisfactory
description of the data may be achieved for a broad range of different potentials [10], while
the magnetic moment shows a stronger sensitivity to the model calculations of the meson
exchange currents. Moreover, the consistency of such calculations is not at all clear. For this
reason a comprehensive covariant investigation has its own right. A prominent feature of the
relativistic consideration within the Bethe-Salpeter formalism is that the meson exchange
effects due to pair creation currents is taken into account consistently {10, 18, 19], so that
the essential part of the mentioned effects may be estimated in a self consistent way.

The general approach to calculate the static characteristic of the deuteron within the
BS formalism has been elaborated by several authors since some time (see, for instance,
refs. {3, 14, 15, 16, 20} and numerical estimates have been performed. However, explicit
calculations have been done within additional approximations for the solution of the BS



equation, e.g., for a separable interaction and by disregarding the negative energy states
[15], or with one nucleon on mass-shell {3], or from a general point of view with adjusting
the probability of the P states in order to fit simultaneously both the quadrupole and
magnetic moments [16] (for this goal one needs an anomalously large pseudo-probability
of the P waves, say ~ 1.5%). In the present paper we perform a covariant calculation of
the quadrupole and magnetic moments of the deuteron within the exact solution of the BS
equation and avoid additional approximations to the problem.

Our present investigation is also partially motivated by the renewed interest in the exper-
imental investigation of the nucleon and deuteron spin-dependent structure functions at low
momentum transfer Q* [21]. This interest is connected to the study of the Q* evolution of
the Gerasimov-Drell-Hearn sum rule {22], which relates the spin-dependent structure func-
tions of the targets to their the magnetic moments. For instance, only a correct description
of the deuteron magunetic and quadrupole moments will assure a reliable extraction of the
information about the neutron structure function from the deuteron data.

Our paper is organized as follows. In section II the basic covariant formulae for the elec-
tromagnetic current and static moments of the deuteron are presented. In section III the
general definitions of the Bethe-Salpeter amplitudes for the deuteron are given in different
representations and their symmetry properties are studied in detail. The transformation
matrix relating the amplitudes in different representations is determined. The relativistic
amplitudes are compared to the nonrelativistic wave functions, using the calculated observ-
ables, e.g., the vector and axial charge densities. In section IV the covariant formulae for
the magnetic and quadrupole moments are derived in the Breit frame. The effects of the
Lorentz deformation and dependence of the amplitude on the relative energy of the two
nucleons in the deuteron are explicitly taken into account. The terms corresponding to the
nonrelativistic expressions for the moments are determined in explicit form and the relativis-
tic corrections are computed. The sections V and VI contain conclusions and the summary,

respectively.

2 Relativistic kinematics of the electromagnetic cur-

rent

The definition of the quadrupole moment (}p and the magnetic moment pp of the deuteron
appears most transparent if one starts with the famous Rosenbluth formula (cf. [24]) for the
elastic scattering of electrons off the deuteron, e + D — €' + [V,

do do ( 2 2 8
= = A(q) + B(g*)tan” 3 (1)
ey A aton 2
with the following decomposition of the electromagnetic formfactors
8 2
Alg) = Fele") + gn" Fla") + 30 Fald), (2)
I o
B(g") = Zn(l+mn) F(d*), (3)
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where % = —q¢°/4M}, and Mp is the deuteron mass. Q? = —gq° denotes the momentum
transfer. Then the quadrupole and magnetic moments of the denteron are defined via the
normalization conditions for the charge (F¢), quadrupole (Fp) and magnetic {Fis) formfac-
tors at vanishing momentum transfer ¢* = 0

M,
Fo(0) =1, Fo(0)=MEQp,  Fu(0) = pp—>. (4)

The general form of the deuteron electromagnetic current, which is invariant under
Lorentz and time-reverse transformations, is given by

(P, NP = ——

s B X) T e (P, ), (5)

where *(P’, A} and (¥, A} are the polarization four vectors of the initial and final deuteron
states; greek sub/superscripts denote Lorentz indices to be moved with the Minkowski metric
gu; P and A stand for the three momentum and helicity of the deuteron. The covariant
normalization of the current reads

P
li N = gt §u ). 6

The matrix element J¥, can be expanded in terms of the scalar formfactors in the form

Je = (P'+ Py (gm A(") — o5 Fz(q%) + (90, - 629,) Gr(a"). "
D
The scalar formfactors Fi 2 and G, are related to the formfactors Fo o ar by (cf. [23])
2
Fo(q') = R(d)+ 5ulfi(e") + L+ m)Fa(e) - Gud)], (8)
Folg®) = A&+ (L+n)Flg") — Gu{d?), (9)
Fu(g®) = Gi(d®): (10)

In the nonrelativistic impulse approximation these deuteron formfactors read

Fele®) = (Ghld") + GE(dM)) Crlg?), (11)
Folg®) = (G%{d*) + G%(4%)) Cole®), (12)
Fule) = 22 |(GH(e) + G Cola™) + 5(Ohle) + GEN Cole), (19

where G2™(4?) Gg’}’n)(qz)) are the electric (magnetic) nucleon formfactors and the invari-
ant functions C(g*) are defined by

Celq) = 7d"‘(u2+w2)jn- (L), cso=1, (14)
Cold?) = 35? / dr (uwméi%) jo (%) Col0) = M2 Qp, (15)
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Culd) = } f arw [io (5) +5 (%)) co0) =3P, (16)
7 w?\ | /qr 7 uw  w?\ . sgr
Csld®) = D/dT (zﬁ - "2“) Jo (%‘) + Dfdf‘ ("\/7—2‘ + 3‘) Iz (%‘) ;
Cs(0) =1 — gp,g. (17)

Here j; is the modified Bessel function of #-th order, u and w represent the S and D waves
of the nonrelativistic deuteron wave function, and Pp is the weight of the D wave in the
deuteron wave function.

To calculate the formfactors Fggar within the Bethe-Salpeter formalism one has to
express the current (5) in terms of the BS amplitudes and, then, to extract the coefficients
of different Lorentz structures given by eq. (7). Taking the limit ¢* — 0, the static moments
can be also obtained. Apparently, these calculations can be done in any particular reference
frame. For example, the Breit frame is especially convenient for such type of calculations.
The Breit frame is defined by the four momenta components of the deuteron

P=P=E P=-3 p=3 (18)
2 2

Choosing q along the positive z axis and contracting J¥, with the polarization vectors

g(P’, X'} and (P, A), which obey

=

(P 1) =¢(P,1) = ~\/§(0,1,i,0), (19}
(P 1) = (P, 1) = %(o, 1,—i,0), (20)

e{P,0) =(—/7,0,0,/1+1n), =(¥,0)={(/70,0,/1+n), (21)

one arrives at expressions for the matrix elements of the deuteron electromagnetic current

in terms of the formfactors:

Il

(P X2 N e/ 140 (Fiw+2n A+ (1 +9)F — Gi]dnvpbag), (22)

(PIEN = e XL TTRG: (Bran — bran), (23)

il

—7e ——\gix/l + Gy (Saag1 + aaa), (24)
(P XNVJFIP XY = 0. (25}

(P!, N1J¥|P, &)

Thus the magnetic and quadrupole formfactors of the deuteron are recovered by

Py AT . z —
™ /3 lim (P = HJ*IP,A=0)

= 26
o Mp = a0 NAEY ’ (26)
1 PN =0lJYPA=0)— (PN =1JP =1

ME =0 mi+n '



Equations (22)-(27) are the basic relations providing the calculations of the electromagnetic
characteristics of the deuteron. In practice, one needs to define explicitly the operator J,
of the electromagnetic current and calculate its matrix elements with the deuteron states

[P, A).

3 The bound state wave function

3.1 General definitions

Using the technique presented in ref. [9], the BS equation for a bound state in ladder ap-
proximation can be written in the form

. AB Alp) Te x(7'; P)Ts Ap)
K{po,p) x(m; P} + E = /d"’p’ =0, 28
(po o din? (p—pY —u} 29)

1 2
‘K(pﬂa p) = (EIZ) - Pg . Eﬂ‘flz)> - pg Mf}} (29)

where x(p; F’) is the BS amplitude for the deuteron in the matrix representation [9}; A(p;} =
Pi —m; p = (po,p)i is the four momentum of the i-th nucleon in the deuteron expressed
in terms of relative four-momenta p or p’ and the center-of-mass (c.m.) momentum P =
(Mp,0): p12 = P/2 £ p; B enumerates the exchanged mesons; pp is the mass of the
meson; I'p is the interaction vertex between the nucleon and the corresponding boson B,
and Ag = g} /4w with gp being the coupling constant. We use here the short hand notation
p = p* v, for contractions with Dirac matrices -,,.

Since the BS amplitude y and its adjoint ¥ satisfy the homogeneous BS equation they are
determined up to an arbitrary constant which is fixed by an additional normalization con-
dition. In the ladder approximation the normalization constant may be fixed by computing
the matrix element of the electromagnetic current at ¢* = 0, Le.,

/ —é% Tr {253 P) 1 x{p: P — 1)} = 2P.. (30)

The normalization condition (30) coincides with the one used in ref. [14].

The BS amplitude is a (4 x 4) matrix in the spinor space, and consequently the BS
equation (28) possesses this matrix structure as well. To solve this matrix equations one
can utilize a decomposition of the BS amplitude over a complete set of (4 x 4) matrices and
solves a system of coupled equations for the coefficients of such a decomposition. The choice
of the representation of the matrices depends on the concrete attacked problem. Certainly,
different representations are related by linear transformations, and it is straightforward (but
cumbersome) to transform results from one representation to another one. In our opinion,
to solve the BS equation and to compute matrix elements of the deuteron observables {as for
instance eq. (30)}, a convenient way is to decompose the amplitude in terms of the complete
set of Dirac matrices, which form the Clifford algebra (for more details cf. ref. {91}. By
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exploiting the parity invariance of the BS amplitude

P xp(po, P) = 7P Yo X0(Po, ~P) Yo, (31)

it may be written for the deuteron, which has positive parity eigenvalues np = 1, as
Xo(p; P) = 5P + 7°7°A° = (7:V) = 715(7-A) = 2i7°(7-T°) — 2¢°%5(~-T), (32)

with pseudo-scalar (P, A%), axial (A) and vector (T°, T, V) functions depending only upon
the relative four momentum p in the c.m. frame. The angular dependence of the state
with spin J = 1 and its projection M owing to the rotational invariance of eq. (28) is

expressed in terms of the spherical and vector spherical harmonics. For example, when
denoting X = (P,A%) and X = (A, 79, T, V), we may write

X(po, ) = X1(po, IPNY1ma(), X(po,p) = > Xe(po, Iy YT (). (33)

L2012

The corresponding equations for the radial functions can be found by a partial wave decom-
position of the kernel in eq. (28) and by carrying out the angular integratioﬁ‘, An example of
the system of coupled equation for the radial amplitudes in the case of one exchanged scalar
boson is given in ref. [9]. In what follows the notation for the radial amplitudes are kept as
in eq. (32) with the lower index indicating the value of the angular momentum L in eq. {33).

3.2 The transformation properties of the paftial amplitudes

Due to the parity invariance, eq. (31}, only eight radial components are relevant to describe
the deuteron amplitude, namely

Pi, AL, Ao, As Vg, TOOT, T (34)

Analyzing the behavior of the amplitude under the symmetry transformations, one can
establish the properties of the components (34). The invariance of the BS equation under
the time-reversal operation 7

T x5u(po.p) = 7' 7° X% (po, ~P)¥* +° (35)
and the complex conjugation X
K x2up) = (=)™ x2pu(p) (36)

imply that the seven partial amplitudes Py, Vi, A}, Aps, Ty are real functions, while the
amplitude T7 is purely imaginary, i.e., T{ = ~T%.
The Pauli principle implies that the amplitude xp{p) changes the sign if two nucleons

are interchanged, i.e.,

xp{po, p) = —xH{—po, —p). (37)



From egs. (37) and (36) follows that AY and T? are odd functions with respect to the operation
H{po — —po)

I A?(p(h P) - "A;}(pﬁa p)7 HT?(?O# P) = ‘_T?(PD: p): (38)

and the remaining six amplitudes are even functions of po- This symumetry property is useful
for the classification of the amplitude according to two-nucleon states with a given relative
€nergy, i.e., the p spin classification. _

Table 1 summarizes the properties of the partial BS amplitudes in the representation
(32) under the symmetry transformations.

3.3 Observables

Relying on the symmetry properties of the partial amplitudes, defined by eq. (32), the BS
equation (28) has been solved numerically [9] for the deuteron at rest by performing a Wick
rotation pg ~+ ipg. In our present calculations we include six meson exchanges of #, w, p, o,
n and &, which describe the effective NNV forces. The set of the meson parameters, such as
masses, coupling constants and cut-off formfactors, employed here is the same as in ref. (14},
obtained from a fit of the phase-shifts of the NN scattering and the binding energy of the
deuteron.

The BS amplitude does not have a direct probabilistic interpretation as the Schrodinger
wave function. Moreover, there is no simple way to corpare these two objects describing
the same system, namely the deuteron. In order to make a comparison possible, we can
compute the same matrix elements of observables in two the approaches and compare these
observables.

For example, the y = 0 component of the normalization condition (30) in the rest frame
of the deuteron, due to (D|N(0)y°N(0)|D) = 2Mp, is simply a charge of the deuteron
associated with the vector current. In the Wick rotated system and in terms of the partial
amplitudes (34) it reads

_ dpy dlp|lpf ¢ - 2 p0% 470  \s2
Mp = Q/W{WMD (P1+A1 470 +vl)

+(2my — Mp) (X;?- + ng“) ~ (2mx + MDp) (Xg? + X7 2)

Q\f 2v2|p|
v

_Qgpgvi (\/éx;f +XF — O x;) } (39)

where X* z= VE(T £ Af2). Now we define the charge density pu{lpl) as

VEBlp, (x* VIXE + X5~ \/’f}x;;)

?%(Difv((})’?gf‘vr(@)]ﬂ‘) = f%%% ch(ﬁ‘h Epl}z {40}



pallpl = [ 2 pas(ou o (a1)

This already may be compared with the corresponding nonrelativistic analogue, i.e., the
square of the deuteron wave function in the momentum space, which is proportional to
u?(p) + w?(p).

In the same manner also the nucleon spin-density may be defined as density of the axial
charge

i OO NOID) = [BEREL o), 42)
pusin(161) = [ L2 (s, ). (43)

In the nonrelativistic limit this density reflects the contribution of the D wave admixture in
the deuteron, which is proportional to u?(p) — 2w?(p).

Results of numerical calculation of the defined densities together with a comparison with
their nonrelativistic counterparts obtained with the Bonn and Paris potentials are presented
in figs. 1 and 2. All curves exhibit qualitatively similar shapes and are identical in the
nonrelativistic region |p| < 0.5 GeV/c. If the momentum |p| increases, the deviations of the
relativistic results from the nonrelativistic ones becomes more significant, but still toe small
to be attributed to relativistic effects. Rather it is compatible with the model differences.
Particular attention is to be paid to the fig. 2, where the spin density is depicted. This
function is rather sensitive to the internal spin-orbital structure of the deuteron. The fact,
that the "elementary oscillations” of the spin density in the potential models are reproduced
by the solution of the BS equation, might be interpreted as the relativistic structure of the
deuteron which is governed by the nucleon interaction in states with a positive energy and
L == 0,2, ie, by 35; and 3D; configurations. Therefore, in spite of the quadratic forms
of the partial amplitudes, which are not diagonal in egs. (39) and (43}, one can define the
relativistic analogue of the probability of the D wave admixture in the deuteron. Carrying
out the |p| integration in eq. (43) and equating the result to (1 —3/2 Pp) we find Pp = 5%
(cf. [14]), which is compatible with the probabilities of the Bonn (Pp = 4.3 [8]) and Paris
{Pp = 5.9 [7}) potential models.

3.4 The BS amplitude in different representations

To have a closer analogue with the nonrelativistic consideration it is convenient to use another
basis set of matrices in the decomposition of the BS amplifude. In the literature the two-
spinor basis [26] is frequently used, which means an outer product of two spinors, representing
solutions of the free Dirac equation with positive and negative energies. This basis is labeled
by the relative momentum p, the helicities A; and the energy spin p; of the particles [14],
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sometimes also called (J, A, A9, p1, p2) representation. In this case one usually adopts for the
partial amplitudes the spectroscopic notation 25+ L5 je.

3¢t 38, Bt 2Dy, P Pt AN S (44)

Sometimes it is more convenient to change from the {(J, A1, A2,y p1, p2) Tepresentation to the
representation (J, L, 5, p) where p is the projection of the total energy spin of the system.
In this case the notation of the components is as follows

YT = (02, 0,08, vf, ut u, wt, w), (45)
where v, v, w correspond to L = 0,1, 2, respectively, and o or e mean the odd or even parity
relative to the p spin function; the lower indices s and  denote the singlet and triplet spin
configurations, respectively. According to egs. (37) and (36), the amplitudes vl, v are odd
and vg,vf are even functions of py. The partial amplitudes in the basis {(44), (45) are of
a more familiar form and show a more transparent physical meaning since they may be
compared with the deuferon states in the nonrelativistic limit. It is intuitively clear (see
also figs. 1 and 2) that the two nucleons in the deuteron are mainly in states with [ = 0,2
and with positive energy so that one may expect that the probability of states with negative
energies and L = 1 in egs. (44) - (45) is much smaller in comparison with the probability
for the 257% and 3Df* (or wt and w*) configurations. Moreover, it can be shown that
the waves 35 and ®DF ™ directly correspond to the S and D waves in the deuteron, while
those with the negative energy vanish in the nonrelativistic limit.

The partial amplitudes (44) are defined through the following decomposition of the BS

amplitude
xo(Po,P) = Y _ $a(po, [Pl) Vie(p), (46)

where « = {J, L, 5, p1, p.} labels different states of the system; ¢, denotes the partial am-
plitudes in eq. (43), and V3,{p) are the spin-angular functions

Vi) =i 3 (LmSslTM) (50159055) Yim(B) U () U2 (~B). (47)
s152m
In eq. (47) the quantities U?{p) are the free nucleon spinors; the explicit matrix form for the
spin-angular functions V¢,(p) is given in the Appendix 1.
In order to establish a connection between the representation (32) and the spinor basis
(44)-(46) we represent the Dirac matrices in eq. (32) as a direct product of Pauli matrices
of the nucleon spin o and the p spin

xo(p) = PSP ~2i(0-To)] +ig @A + (- V)] + p*@ (oK) + 2 (e T). (48)
The last two terms in eq. (48) may be rewritten as

1

7 (- p8(eX7). (49)

PR A) +2I8(0 T) = —=(] + )@ (o XF) +

Sl
o
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Then egs. (48) and (49), together with the symmetry properties of our partial amplitudes
listed in the Table 1, show that the desired relation between the two representations appears

as follows:
ST~ XS ST~ XS, PDTY ~ XY, DT~ X,
3Pf‘ ~ T?, 3Pf ~ Vi, 1Pf ~ Py IPf m~ A?.

The relation between (34} and (45) can be established exactly. The components being odd

in the relative energy vg, vf and A}, T} are related directly to each other via
U: = -—&Aé, ’U: = 2T(1)? (58)

whereas the remaining six components are connected via linear combinations. By rep-
resenting these amplitudes as six-component vectors, Y7 = (v, vf,ut,u™,w,w™) and
U7 = (P, Vi, XI, X5, XF, X5), the transition from ¥ to ¥ is provided by a unitary trans-
formation ¥ = U¥ (with det(l/) = —1, and UUT = 1) with the following explicit form of
the transition matrix

Ve — o (51)

2/1+ (2
[ -

e

Lot

o lrs
N

=

}

Sl

S
e

i
P
i

% o
L ind Cad
|
wl S G 7T
.
,.j.
+
M)
et
i
gh
+
]
fsane ]
[ %]
)
31
|
L Py
e
it

0 C2A1-/I4E 14/13C 1-/14€2
¢ 3¢
\ - /Al /142 0 1-/13+¢7 _18/142 )
3 3 3¢ ¢

with { = |p|/m. In the nonrelativistic liimt, where ¢ <1, the matrix U becomes diagonal

sk

S

U = diag(-1,1,1,1, -1, —1), (52}

and our representation coincides with the one in the spinor basis. In what follows all formulae
will be derived in terms of the partial amplitudes (44) or (45}, nevertheless the numerical
calculations are performed with our solutions (34) by utilizing egs. (50) and (51).

Coming back to the normalization condition it is easy to show that eq. (39) may be
transformed to a diagonal form

2 [dpidipllpi® N ~ ‘
Mp / (2?%‘)4 (} +(P‘h |p[):w} (;04, ]pl)) =1, (53)

which is exactly the normalization condition used in ref. {14]. In eq. (53) Y denotes the eight

component vector {45}, and @ is a diagonal matrix

& = —diag(Mp, Mp, Mp, Mp, Mp — 2Ep, 2B, + Mp, Mp — 2E5,2Ep + Mp),  (54)
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so that the integrand in eq. (53) consists of a sum of quadratic terms of radial functions
¥, weighted with w,. Therefore each term, after integration, may be interpreted as pseudo-
probability of finding the corresponding relativistic state in the deuteron. The result of our
numerical calculations of the pseudo-probabilities is presented in Table 2. It is seen that an
admixture of the negative-energy amplitudes affects the contribution of the positive-energy
states. The appearance of the negative contributions of waves with negative p spin is not a
surprise; 1t follows from the physical meaning of the normalization condition according to that
the contribution of each term in eq. (53) is the effective baryon charge in the corresponding
state. The psendo-probabilities of § and D waves (see Table 2) are close to the corresponding
probabilities obtained in the nonrelativistic Bonn and Paris potentials, as expected, since
the deuteron is essentially a nonrelativistic system.

To investigate the behavior of the partial amplitudes and their nonrelativistic limits, we
employ once more the normalization integral (30), now however in the form of eq. (53).
Then, similar to eqs. (41) and (43), we define the following functions ¥ depending upon |p}
by

%(|p)) = \/2 fdpq wa |Yo(pa, [PI)I2 M5 (55)

Thus %* may be regarded as the absolute value of the relativistic wave function of the
deuteron in the state « (for instance, o = 5 corresponds to a *S7™" configuration, a = 7 to
3D etc., cf. eq. (45)).

Figures (3) and (4) display the behavior of the relativistic wave functions v and 7
(solid lines) versus the relative momentum [p} in comparison with the nonrelativistic § and
D waves. We conclude that with an accuracy of model ambiguities in the nonrelativistic
calculations (given here by the difference between Paris and Bonn wave functions, i.e., the
dashed lines in figs. 3 and 4) the large relativistic components are close to their nonrelativistic
analogues up to |p} ~ m. However, there is a distinctive difference in the shape of the D
waves in the two approaches. Namely, the nonrelativistic functions change the sign in the
region |p| ~ m, whereas the BS component does not do so {cf. the solid line labeled as BS-Iin
fig. 4). To understand this we tentatively introduce an auxiliary definition of the relativistic
D wave which is just the difference between the integrand in the normalization condition and
the coniribution of the 35F% component, i.e., we introduce in the definition of the D wave
the contribution of all the negative energy states: 1,53“ ~ Vut? 4wt +u=t 4 . In this
case only two wave functions ;] and 1,5‘;'2*' determine the normalization of the BS amplitude,
and the correspondence with the nonrelativistic limit becomes one to one. In fis. 4 the

function z,ng" is labeled by BS-1I, and it is seen that it displays a minimum in the same region

as the nonrelativistic functions, i.e., it has the same shape as the nonrelativistic D wave.
One observes that the nonrelativistic D wave already mimics relativistic effects, so that in
calculations of relativistic corrections to the nonrelativistic approaches an overestimate of
the magnitude of such corrections may occur. For completeness, in fig. 5 we present the wave
functions for L = 1; since the waves v~ and w™ are negligibly small, even in comparison
with the waves L = 1, they are not presented here.
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3.5 The vertex functions

In studying the nonrelativistic correspondence of the solutions of the BS equation it is
convenient to work with the BS vertices G(p; P) defined by

(B -+ m) G(p; P) (P2 + m)

{p} — m2)(ps ~ m?)

x{(p; P) = (56)

From egs. (46) and (56) it is possible to find a decomposition for the vertex G(p; P). In
doing so, one introduces the two four-vectors of on-mass-shell particles corresponding to the

Dirac spinors in eq. (47), i.e.,
kl = (Ep: p): k2 = (Ez?r ‘“p)v Ep = 92 + mz: = (P(h p)' (57)

Then in eq. {56) the inverse propagator of the nucleons may be represented in terms of the
vectors ky o by

Sy = {; s pom= 5— (ks = m)SZ (1) + (B + m)ST (D)
—1 P - -1 i w1
$ @ﬁs§~p—mm§§{ua?mawa+wh+mm+@ﬂ, (58)
where i v .
5:(1) = (—"‘gﬁ T Ep) . Su(2) = (%”— ¥ E) . (59)
Because of '
SN U (p) = sign(p)Sn (1) UP(~p),
STH2YUP(-p) = sign(p) S (2) U (), (60)

the decomposition of G(p; P) reads
Gm(p: P) = D G(po, IP) Viu(~P); (61)

hence the partial amplitudes and the vertex functions are interrelated via the following simple

expression
Y (po, Ipl) = Soi(1) 85,(2) G*(po, [P)- (62)

The relation eq. {62) implies that the BS amplitudes (46) have sharp maxima around py =
0, while the behavior of the partial vertices G*(pq, |p]) is predicted to appear as smooth
functions of the relative energy (see also ref. {14]).

The behavior of the vertex functions is shown in figs. 6 and 7 for the configurations
35 and *DFT as functions of the relative energy po and momentum |p} in the Wick-
rotated system. One observes that the dependence of the veriex functions upon the relative
energy is weak, hence one may expect that the nonrelativistic and relativistic vertices at
po = 0 have similar structures as functions of |p|. From this observation and eq. (62} we
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establish another relation between the BS ampBtudes and nonrelativistic wave functions.
Below, as an example, we show how one can obtain the relativistic wave function for the
35+ configuration from the BS amplitude. The energy dependence of the component u* is
factorized into two parts, namely a dependence on the scalar propagators (59) and a vertex
function. Then, using the smoothness of the vertex as function of py we replace it by its
value at py = 0 multiplied with a smooth function of py, i.e.,

G*(pylp)  _ G*(0,Ip])é(po, o)
[(%’2 = Ep)z - P(zj] [(%ﬂ — Ep)? - Pg]

u*(po, [p]) = (63)
with £(0, {p}) = 1, where the dimensionless function {(pg, |p|) reflects the energy dependence
of the vertex function. In view of the smooth behavior of the vertices as function on py, one
may replace this function by a constant, £(0, |p|) = & with £5 ~ 1. Then in the normalization
integral eq. (53) the integration over the relative energy may be carried out explicitly and
the remaining part corresponds to the square of the nonrelativistic wave function, i.e., we
define the nonrelativistic limit of the BS amplitude u* by

(f"fp — QEP)
4/Mp

Similar definitions, using eqs. (53), (54), (59) and (62), are valid for other waves. The
generalized relativistic S and D waves in this manner are displayed in figs. 8 and 9. These
figures should be compared with figs. 3 and 4, which display the modulus (that is without
the sign) of the wave functions, whereas figs. 8 and 9 rely on the absolute values. One can

Yo(lpl) = &o ™ (0, [pl) (64)

consider this as a new way of finding the nonrelativistic analogues of the BS amplitudes. The
actual calculations have been performed with & = 1. A comparison with the corresponding
nonrelativistic wave functions at [p| — 0 shows that, by choosing the parameter ¢ = 1,
we slightly overestimate (by about 10%) the relativistic functions (see figs. 6 and 7). It is
worth stressing that in our solution of the BS equation the relativistic D wave does not
change its sign in the interval up to |p| ~ 1.5 GeV/c. This is the most essential difference
between the relativistic and nonrelativistic approaches in this region. Therefore, one can
expected that the relativistic corrections to physical quantities in the deuteron up to {p] ~ 1
GeV /c are relatively small; to distinguish them one should either compute observables which
are known experimentally with a very high precision and sensitive to the spin structure, or
find special processes where the large components are suppressed and only the states with
negative energles are relevant.

4 The static characteristics of the deuteron

Let us calculate now the static moments of the deuteron in the BS formalism. The conserved

electromagnetic current of the deuteron (5} in terms of the BS amplitude is given by

(P, N|J|P, ) = —ieNp f EpTr {Rald's P valms P) Sel)™ ), (69)



where Sp(p2) = o +m, p' = p+¢/2, P'= P+ g, Np = 1/(2z)*/2Mp. The quantity T,
is the photon-nucleon electromagnetic vertex, which is assumed to be of the on-mass-shell

form
o Fo &
Tu(g) = v Fls(qz) T om ounq (qg), (66)

where 0., = 3[v.,7], and F? are isoscalar Dirac (Pauli) formfactors of the nucleon with
F(0) = Fo(0) = 1/2, & = gy + pon — 1, and pipn are the proton and neutron anomalous
magnetic moments in units of the nuclear magneton e/{2m). The gauge invariance of the
electromagnetic current in the ladder approximation has been proven in ref. [14] (see also
[25]).

Now we have to interrelate the expression for the static moments (26) and (27), which
are determined in the Breit frame, and the BS amplitudes, which are numerically obtained

in the rest frame of the deuteron. This relation is given by the general transformation rules

(P P) = ML) xa(£7p; Pem ) A7 (L), (67)
R8s P') = A7) DAL Pam) ML), (68)
A L) Sp(5P =P A(L) = Sp(5 Pam. — £79)7, (69)

where A is the operator for spin-% particles corresponding to the Lorentz transformation

P=LP.y, P=LP 0,

__ Mp+ Py

with the corresponding Lorentz transformation matrix £
Vi+ng 0 -1
0 ' 0
. 7l
0 0 (1)
—/1 v1i+7

The direction of the boost is supposed to be parallel to gz. Then, after the Lorentz trans-

A(L) (70}

o

0
0
£ o=
1
0

o D

formation of the integrand in eq. (65), the matrix element takes the form
(P NP A) =
—ieNo, [ a9 Tr {5 P ) Elas 95 o) Se (G Pom. = ) AT OP | (72
where
Luia) = ML) Tu(q) AL) (73)
and the variable p’ is represented via p and g as

1 1
p=Lp B) ﬁ(pw) + ;)-q) = EQP + §£‘?: ("74}
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with components

P = (1 + 2n)po — 24/7\/1 + 1p° — Mopn, (75)
P =p*, P =p, (76)

P = (14+2)p° — 2//1 + np° + Mp/i/1 + 1. (17)

Eq. {72) is the starting point in evaluating the static moments of the deuteron in the BS
formalism. The main peculiarities of this matrix element, in comparison with the familiar
nonrelativistic expression, come from the Lorentz transformation and from the relativistic
nature of the BS amplitude itself and might be characterized by
(i) effects of the negative-energy partial states {especially nond;agonal expectation values of
the current between 35#% and 1P 3 plh(e) pariial states),

(ii) 2 dependence of the amplitude upon the relative energy po # 0; in studying the static
characteristics of the deuteron this effect is called retardation in the BS amplitude,

(ii1) an effect of boosting to the internal space-time variable, that is the effect of £ # 1,
(iv) effects of the deformation of the BS amplitude concerning the booster A(L) # 1.

In fact, in the matrix element (72) these boost effects reduce to a deformation of the
photon-nucleon vertex eq. (73) and to corrections from {A=*(£)]%. In our case, i.e., as 7 — 0
(see eqs. {26) and (27)) for the eqs. (72) and (73) one may write

(AHOF = 1+ Viron + 3, (78)
AL) 10 ALY = 7o (79)
A(L) 1 A(L) = MO (80)
ML) 10 AL) = 74, (@ =0,1). (81)

In what follows, the deviation of the quantity [A~'(£)]? from unity in the matrix element
eq. (72) we call the effects of the Lorentz boost in the BS amplitude.

4.1 'The quadrupole moment

4.1.1 General formulae

According to eqs. (27), (66) and (78)-(81) the result for the quadrupole momentum is pre-
sented as follows

Qb = 3 3 ("0l
ZZ{ “1Qcle’) + (@1QEP 1) + (0" 1Qarla’) + (& 1QFF 107, (82)

aa pgt

il

where the subscripts ¢ and M mean the corresponding contribution of the charge and
magnetic part of the photon-nucleon vertex {66), and the superscript LB is the contribution
of the Lorentz boost [A{£)"1]? —
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The corresponding matrix elements of the zeroth component of the deuteron electromag-
netic current in the definition (27} take the form (A = 0,1)

JENP P) = 2Mp f (ﬂi)4 Tr {X,\(p Piyvxa(p P}SF(—» _p)~1} (83)
NP, P) = ﬁ:ﬂ% f m’l‘r {;‘o\(p’;P)rym(p; P)sp(é_ — p)—umB} . (84)
TP P) = = ;ID 4:; e
[ (‘f 17 {x,\(p P)A(E) (ot — )AL x5 P)Se (5 )—1} (83)
TP, P) = QJ;D Z;z/; (86)
/ zg 5 {XA(P'; PY(v0d — dv0)xa{p5 P)Sp(g - p)”‘»mnm} _ (87)

As next step the partial wave decomposition of egs. (83) - (87) has to be performed. Then
one expands the integrands in Taylor series around # = 0 and carries out the limit 7 — 0. It
is clear that one has to keep corrections including O(n) in both the wave function x{p}, p’; P)
and the matrix A(L).

This scheme of calculation allows to investigate separately the contribution of different
relativistic effects mentioned above. The egs. {84) and (87) are new contributions which
account for the effect of the boosted photon-nucleon vertex. Moreover, also the Loventz
deformation effect of the BS amplitude is taken into account in these matrix elements through
the relative momentum p'.

Obviously, the main contributions to the quadrupole moment come from the charge part
(a” '[Qg[a”), computed with the large S and D components of the BS amplitude. For these
states, with p = p' = +1, one can recover the nonrelativistic formula for the quadrupole
moment of the deuteron and separate the corrections due to the relativistic Fermi motion of
the nucleons and the retardation in the relative energy

37 (" |Qclaty = Q5T 4 QL) (88)

anf=8D

The two terms in r.h.s. of the eq. {88) reflect the existence of derivatives with respect to the
momentum [p| and the relative energy in the corresponding integrands

Ta [ |2dl l _ Mp
(+4) — Po p p

2po 1y 1 (Ep'“m)z + 2

1 14}5’?, + SEf,mz — 3m* + 203 m

[ p + 2
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2

1 3

2 3m* — 4—E§ + aEgm +58E3m

] p + .
+ 80 IPPE; L (PU? !P|)Uv (?07 iPD
V22E, + 3m 19
o R (o, [P]) ™ (o,
20 Ep u (pD !lepl a!plw (p() 1pD
\/“ 22E,

d
20 Ep +(p9 zpi)]PWI l (PO;IPD

2 2
+ Y20 1pz)g§;ﬁu*(pe, 1)+ Y2 o o o o rm)}
1lpf? 2 1 8
aM? 2! Iz +(P ‘P]) +(p0r‘p|)rl;l-'émw+(?9=‘pl)
3v2

1o (7o 1P (po, 1P

VB o, 1) 5 o 1)+ VB ) 50 o o)}

and

dpolp|*dlp] 1 |p[® Mp
{(+:4) — Po|p Mo
@ ‘MWD / / i(2r)t 5 M2 (E 7 T Po) X (90)

{=VE [0 )z o 1)+ o, ) s o )
_ (po,ipn———gwwpo,-lpn}

Fdpolpl?dlp] 3 (1 2po \, Mp
QMDf / i(2r)t 10Mp" MD)(ED 5 + po) X

{\/5 [(1 + E;) «* (po, ;p;)-(%w*"(pn, Ipl) + (1 + —_,;%) w (po, tpl)gf;gu"*(pa, lpl)]

| +w+(pn,1pn£;w+(po, |p[)}

+o0 4o
_& dpo|pl*d|p] ip! 2po Mp
+2MD/ (27 SMD MD)(EP S +po) %

| 5? o
(V2w on ol Gt o o + o o 5 o o)

+w+(pﬂs !p{) 81?{?3]}3! w+(pﬂa lpl)} E

where u¥(po, |p{) and w*(po, |p}) represent the radial function of the corresponding partial
states ®S7* and *Df*. In the nonrelativistic approximation, Ep — my, po/Mp — 0,
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eq. (89) yields
Q(-é-.—i—) —

T f / e { (53 * mater) vt lo] w* e o

- [(6?;:;2 " 3 3 + ) w+(Po,lPi)] wt(po, |p])} (Ep — f}%)

pdlp|  |pP?
dpalplzdpl # 28 6 i
Mﬂf’f f e (o e~ o) o] >
w+(100a [p{Ep — f‘gﬁ (91)

The expression eq. (91) has not yet a "true” nonrelativistic form because of the inte-
gration over po. However, by utilizing eqs. (63), (64) with £, = 1 and carrying out the po
integration explicitly, the familiar nonrelativistic expression [27] for the quadrupole moment
is reproduced exactly:

- dlp| 2 Bo(Ip]) dis(]p|) dyo(lp])
Oo = 20/(2‘3’)3 {\/g [ip! dip! dlp| + 3lplé{lp)) d|P| (92)

# o (“lED) 5(%(11’!))2} ,

where 1o(|p}) and ¥»(|p}) are defined by eq. (64) and correspond to the nonrelativistic $ and

D components of the deuteron wave function (see, also figs. 8 and 9). As seen from eq. (92)
the main contribution to the matrix element {(89) is expected to come from the interference
of the positive S and D states in the deuteron; the remaining terms with negative p spins
are the contribution of the relativistic Fermi motion.

The second term Q;(,:r’ﬂ in eq. (88) and the matrix clement of the Lorentz boost op-
erator (82) are of a pure relativistic nature and reflect the relativistic corrections to the

quadrupole moment. For instance, for the positive states the corrections Q%3 S::;") =

> {at|QLPlat) are

a.n'=S8, 0
d l Izd' I ﬂ’fp ..po 1 i
(++) Poip|"gip _ P BN
@i’ = 2MD / / B A RS YA E v eyl (%3)
6E2  2mEy —m? [1
{ = E'z 2 [5w+(p01 Ipl)2 + \/ﬁ‘u+(P0: Ipl)w-i.(po'f lpl)]

+\/§[pl[ +(poaipl) Aip] w* (po, [pl) + w* (po, [P} 57— Bip] *(po,!pl)]

+ Iplw* (o, zpnmw*m ipn}
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dpalp 2dlpl Mo pf
‘91WD ] / i{2n)* Ep — O)‘— 5 M2 Ep (94)

{«i[ﬁ@m |p|)§£w+(pa, upmw*(po,ipi)-gg;u*(po, P

J
+ 2wt (o, _
0o ) o o) |

After integration by part in eq. (93) and (94) one obtains

+oo oo
d Idi i M 2 2 1
(+4) __ polp|*dip _ D _ Po =
LB Mp / / iery P el 3 50, By (95)
—oo @

2 —mE, —m?
(2% Egp [ﬂw(po,lpz)wwpa,tpln-i»wﬂpa,ipl)?]}

(96)

dpaipl’*dipll Ipl* ( Mn)x

QMD i(2r) SMEE, \'  Bp

{ﬁu+(pe, Pl (o, 1) + g o o7 |

1t is seen that the magnitude of this term is of order Q(++) R (lf;igj) {++) and vanishes in the
nonrelativistic limit. In order to achieve self-consistency in the nonrelativistic approach to
the deuteron formfactors and electrodisintegration reactions, various relativistic corrections
to the matrix elements must be taken into account, such as meson exchange currents and
pair term contributions [13, 28, 29]. In the covariant description of the deuteron these effects
are partially accounted for by calculating transitions between states with negative energies;
the contribution of P states in the deuteron electromagnetic current corresponds to diagrams
with nucleon-antinucleon pair creation in the old fashioned perturbation theory. Moreover, in
ref. [18] it has been shown that, considering the deuteron electrodisintegration process within
the light-front dynamics, beside the dominant contribution of expectation values with .§ and
D waves, an extra matrix element with transitions between positive and negative energy
states is relevant to describe the electrodisintegration amplitude. It has been also shown
that the contribution of this extra component exactly reproduces the pair term corrections
in the nonrelativistic limit. An investigation of the correspondence between the light-front
dynamics approach and the BS amplitude has shown [19] that the exira component in ref.
{18] may be imitated by transitions between a linear combination of the I waves and S or
D waves. Hence in our calculation the pair terms are taken into account via calculations
of off-diagonal expeciation values of the relevant current between the § and F partial wave
states (see also discussions in refs. {10, 16]). A more detailed analysis of the nonrelativistic
limit of the expression for the quadrupole moment with keeping leading corrections ~ 1/m
will presented elsewhere.
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4.1.2 Numerical results

The full expression for the quadrupole moment consists of a multitude of terms likewise
eq. (89) with quadratic combinations of partial states and terms with second derivatives
&/0lp|*, 0%/0p§ and mixed ones 8*/8ip|8po computed between different partial BS ampli-
tudes. Their analytical form has been evaluated by an algebraic formula manipulation code.
Numerical calculations have been performed by using our solutions of the BS equation for the
partial amplitudes eq. (34) and the relations (50), (51). We find that the main contribution
to the deuteron quadrupole moment gives the first term in eq. (82) and that the transitions
between energy even-states dominate, i.e.,

@t = 0.2690 fm?. (97)

This contribution is below the experimental data Qp = (0.2859 + 0.0003) fm? {30] by about
6%, nevertheless it is larger than the usual nonrelativistic calculations. This is an under-
standable effect because of the specific feature of the solution of the BS equation for which
the sum of the pseudo-probabilities of the positive S and I} waves is larger than 1. In
this context, since the pseudo-probabilities of the remaining configurations are negative,
the transitions with P waves are expected to play an important réle in studying the static
characteristics of the deuteron. Particularly interesting is the calculation of the off-diagonal
expectation value between the S and P partial states, which is predicted to replace the
meson exchange contribution in nonrelativistic calculations [18, 19]. Indeed, our numerical
result points o a significant contribution of the mentioned matrix elements in comparison
with other nondiagonal transitions, namely

(W [Qolvl) = 0.0052m2,  (u¥|Qclv?) = —0.0027 fm? (98)

(for example, among other nondiagonal matrix elements the largest one is (w"“‘[@c;!v:) =
—0.00007 fm?).

The part of the quadrupole moment with odd (diagonal and nondiagonal) expectation val-
ues gives a small negative contribution to the first term in eq. (82): ([ch)oda’ = —0.0007 fm?.
Gathering together all the coniributions we obtain Qg = 0.2706 fm?.

An estimate of the corrections owing to the dependence on the relative energy, eq. (88),
shows that they are rather small: Q8 = 0.0006 fm?.

The Lorentz boost corrections have been calculated and they are found to be negative.
Their total contribution is Q&% = —0.0029fm? which, together with Qc¢, gives the final
result for the electric part of the quadrupole moment of the deuteron Q = 0.2683fm?. An
irnportant moment should be stressed here. The contribution of the Lorentz boost terms
with nondiagonal transitions between § and P waves are of the same order of magnitude as
those in eq. (98) but of opposite sign

(HIQEB ) = —0.0083fm2,  (vH]QL|v?) = 0.0027 fm?. (99)

Equations (98) and (99) show that the contribution of pair creation terms in nonrelativistic
calculations is predicted to be negligibly small for the quadrupole moment and confirm the
qualitative results obtained in ref. [16].
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Note that our classification of the matrix elements into the main part and Lorentz boost
corrections (cf. eq. (82)) is rather conventional and does not reflect directly the contribution
of relativistic effects. However, by using egs. (88), (91) and (92) we may present our results
in the form

QD = QNR + éQ‘re! = (02696 - OOGO?)fmz’ ‘ (106)

where the nonrelativistic part Qug is determined by the large components of the BS am-
plitude and does not depend upon the derivatives with respect to the relative energy and
upon the Loreniz boost effects; §Q.« is the contribution of all the remaining terms and,
obviously, is of a pure relativistic nature. It is seen that the relativistic corrections to the
quadrupole moment are negative and reinforce the discrepancy, although their magnitude
is rather small. A similar conclusion has been drawn in ref. [16] from a more qualitative
analysis of the deuteron moment within the BS formalism.

Another source of the relativistic corrections is the contribution of the magnetic part of
the effective current (82) which vanishes in the nonrelativistic limit. Qur calculation show
that its contribution to the quadrupole moment is megative too, (@M[) = —0.0005 fm?,
so that our final result for the deuteron quadrupole moment is Qp = 0.2678fm?, i.e., the
discrepancy in @p is about 6%.

4.2 The magnetic moment

4.2.1 General formulae

According to eqgs. (26), (65) and (78)-{81) the result for the magnetic moment can be written
as

BD = fiy + fy. F poo + pia, (101)

where the matrix elements befween states with positive energies in eq. (101) are labeled
by the subscript +, and the subscript — means that the corresponding matrix element
implements at least one wave with negative energy. The matrix elements p;. reflect the
relativistic corrections. In order to emphasize the nonrelativistic analogue of the magnetic
moment in the expression for the py we subtract the corresponding nonrelativistic formula,
and the remaining part we denote as R, which is the relativistic corrections due to the
Fermi motion effects. Then the functions ... can be represented by

o = (o + n)(Pas + Par) = 5o+ b = 5)Pus + B (102)

i = (s + )P P + 3 (P 4 P) 4 3(Pec 4 P) 4 Ry (109)

b = =i+ i) Pam + Pam + 500+ 1) Pam = 2 Poe + B, (104)

pa- = » O, {105)
+ 7]



where ¢ = u¥,wh,u", w”, b = v,vl,vf,v), and P, are the pseudo-probabilities of the
corresponding partial state. In eqs. (102)-(104) the diagonal expectation values between
states with L == 0,2,1 are written explicitly; the off-diagonal contributions are included in
the terms R and us., where

Ry = _"f],;'(#p“{”.“n““ +—-)H“+ - ZZ, u* —% ¥ (1 %)Pu+

=gl i = 1= SOHY = THY - T (- T,

+§(ﬁp + o 1 %)Hi“+'"’+= (106)
B = '“%(1 - '3—?)(#? + fn -+ %)(Pug + Pye) — }“(1 - %)(Pl}’f + P:pp)

R RS N

+§(H;’3*”? 4+ 2HIY —H R wH”“ i

+V2(ptp + pin — w )1 i

V2 + pin — 1Y HP M?H;jf"": — V2HE, | (107)
Ry = —%(,u,, Yo —1— m)f]{‘ %ﬂ MH‘“‘

Ayt L VY~ Y Ty

o+ (1 - %)P —?(,up + o — 1 %)H;“'“’", (108)

The quantities C*® and H' " are given in the Appendix II. Now the nonrelativistic formula
for the magnetic moment may be recovered exactly by rewriting the term g in the form

By = pNR + Dpy, (109)
where
3 1
pNr = (pp + pn) ~ §(ﬂp + oy — "'2")PD

reproduces the nonrelativistic formula, and the relativistic corrections due to the Fermi

moiion effects are
Apy = By — (pp + pra)(Pum 4+ P+ Py + Pyo + Pz 4 Pyo). - (110)
Finally, the total contributions to the deuteron magnetic moment read
i = pNp+ A,
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Ap = Ry + Api + ps, (111)

1 1
Aiu__ = ""“”(;u'p 'i‘ﬂ'n.) [i(Pu: "i' Pv?) -+ (Pug +Pv§) "{”zpu” + §Pw”“}

1 1 )
+~'4'“(P3p; -+ Pvf) + ‘2“(}31}::; e PEP::?) S cA— pr—— o Ry + By, (1}.2)

4.2.2 Numerical results

Explicit numerical calculations give for the total deuteron magnetic moment the value “p
= 0.856140 {e/2m) which differs from the experimentally known moment Bezp == {0.857406
+107°) (e/2m) {16] by less then 0.15%. This result consists of the nonrelativistic contribution
plus the following relativistic corrections:

(i) the main correction to the nonrelativistic value of the magnetic moment gxg = 0.850718
{e/2m) that comes from the transitions between positive energy states and P states {ve, v2,
v, vy, cf. the term pa_ in eq. (111)); it gives pa— = 6.099-1073 (¢/2m) and contains ~ 0.71%
of the total magnetic moment,

(i1} relativistic corrections from the expectation values of positive energy states of the Lorentz
transformation of the intrinsic variables in the BS amplitude (the term Ry in eq. (111)),
which is found to be negative, i.e., By = —9.75 - 107 (e/2m),

(iii) the term Agu_, and the sum of transitions between states with negative energy (u ™, w™),
and transitions between P states themselves, and a part coming from normalization effects
(cf. eq. (110)); this is a positive contribution with Ap- = 2.99 . 10~* (¢/2m) to the total
moment. .

An analysis of our numerical results obtained for the off-diagonal expectation values
between the S and P partial wave states shows that, in contrast to egs. (98)-(99), the
contributions of terms like pair creation corrections in this case do not compensate each
other and give a total contribution to the magnetic moment ~ 0.35%, which is almost 50%
of the total relativistic correction.

5 Concluding remarks

In this paper we have investigated in some detail the numerical solution of the Bethe-Salpeter
equation [9] with a realistic one-boson exchange interaction. Special attention has been paid
to a study of the relation of the partial BS amplitudes to the nonrelativistic wave functions
and to the covariant description of the static characteristics of the deuteron. In our analysis
we consider various bases used in defining the partial BS amplitudes and the transition from
one basis to another. The representation based on the complete set of the Dirac matrices and
their bilinear cornbinations is found to be extremely convenient in computing the deuteron
observables and processes with the deuteron [31] since in this case the dependence on the
kinematical variables is mainly included in the definition of the partial amplitudes {except
for one spinor propagator, which usually appears when computing diagrams for concrete

processes, see ref. [9}), and the matrix structure of the corresponding matrix element is almost




independent of the intrinsic deuteron variables. However, in this representation an analysis
of the deuteron structure in terms of familiar §, D, etc. components and an investigation of
the correspondence of the obtained results with their nonrelativistic analogues is straitened.
For this sake it is more convenient to use the p spin classification of the amplitudes for
which a physical interpretation of results is easier. In order to combine the advantages
of these two representations the corresponding unitary transformation has been presented
explicitly, cf. eq. (51). With this at hand, calculations of various processes can be performed
easily in the basis of the Dirac matrixes and the final expression may be treated in terms
of the p spin partial amplitudes by utilizing eq. (51). This scheme of calculation has been
employed in order to compute the pseudo-probabilities of different partial states and to find
the nonrelativistic limit of the amplitudes. In section III different methods of comparison
of our amplitudes with the nonrelativistic § and D waves are presented. Apparently, the
most appropriate way to define the nonrelativistic limits of the BS amplitudes is to use the
relation {64), which is based on an analysis of the behavior of the BS vertex functions in
dependence on py and |p| and on the nonrelativistic relation between the vertices and wave
functions in the momentum space. Numerical results, displayed in figs. 8 and 9, show that
the generalized BS wave functions (64) are close to the nonrelativistic ones only for moderate
values of lp|, while a difference occurs for |p| > m. This means that for rough estimates of
possible relativistic effects one may calculate the corresponding nonrelativistic expressions
by utilizing the wave functions (64) instead of the nonrelativistic 5 and D waves. Obviously,
for a consistent investigation of the relativistic corrections it is necessary to use the covariant
calculations with complete BS amplitudes.

We have investigated the quadrupole and magnetic moments of the deuferon within the
BS formalism by computing in the Breit frame the matrix elements of the electromagnetic
current of the deuteron. In our analysis we considered all the possible relativistic effects
connected with both the Lorentz transformation from the rest frame of the deuteron to
the Breit frame and with the dependence of the amplitude on the relative energy p;. By
utilizing results of the investigation of the properties of the BS amplitudes performed in
section III and their nonrelativistic limits, the static moments of the deuteron have been
presented as a sum of two terms: one of them possesses a direct nonrelativistic analogue,
the other one is of pure relativistic nature. We pay special attention to the contribution
of the nondiagonal expectation values between 5 and P configurations which are thought
to include into the relativistic calculations the effects of pair currents, which are widely
discussed in nonrelativistic theories. It has been shown that for the quadrupole moment the
different partial transitions between S5 and P components possess a noticeable magnitude,
however, their summed contribution is found to be negligibly small (see egs. (98) and (99)),
whereas for the magnetic moment these matrix elements give almost 50% of the relativistic
effects. We obtain a good description of the experimental data for the magnetic moment.
The computed value of the quadrupole moment is below the experimental data by about 6%.
That indicates that even a consisteni relativistic computation does not perfectly describe
the data in the impulse approximation. Probably, an adjustment of the operator of the
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electromagnetic current of the deuteron is needed, e.g., by including additional terms not
accounted for within the present approach, such as meson exchange currents with two-meson
exchange diagrams or A isobars [10].

6 Summary

In summary an analysis of the properties of the partial Bethe-Salpeter amplitudes, obtained
as numerical solution of the BS equation with a realistic interaction, has been performed. In
order to compare relativistic amplitudes with the nonrelativistic wave functions a method,
based on the comparative analysis of the observables, has been developed. The static char-
acteristics of the deuteron, i.e., the quadrupole and magnetic moments, have been computed
within the Bethe-Salpeter formalism with satisfactory accuracy. Our results let us trust in
the reliability of our approach, so that it can be used for other tasks, e.g., when tackling the
nuclear effects in extracting the neutron structure function from scattering experiments off
the deuteron.
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Appendix I

The matrix form of the spin-angular functions V§,(p), eq. {47), may be obtained explicitly

by replacing the outer product of the free nucleon spinors Uf(p) by their direct product,

Uf(p) ® UsT(—p). The BS amplitude takes then the form
xp (@0, PYUc = da(ps, |P|) Toe(p) s,
&
with 1'%, (p)

T%p) =" > (LmSs| M) (5 81—32!58) Ym(B) UL (P) UL T (~p),

S182M0

where Ue is the charge conjugation matrix, Ug = ivyp.

One can exploit the p spin dependence and replace T%,(p) = I'5"**(p), where
rét(p) = by +m 1+19PJ (p,€) ko ~
V2Ep(m+ Ep) 2 \/zEp(m + By
G, —— ( ky —m —1+7 =4 by +m
Iy (p) = Falp, &) :
V2Ep(m+E,) 2 \/2Eo(m + E,)

i}ﬁ—-m 1+'yg E:I—i—m

S w2 Y BEm By

- Ey —m 1"y kgw-m
T (o) = : - (2, €)
M 2 (m+ E,) 2 Halp V2Es(m+ By’

with & € {L, S, J}.

(113)

(114)

(115)

The spin-angular structures for some partial waves are shown in Table 3. Here £, is the

polarization vector of the deuteron with the components in the rest frame given by

£ = (—1,~4,0)/v2, &_;=(1,-4,0)/V2, £ =(0,0,1),

and the four-vector £aq = (0,€,,).
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Appendix I1

Below we list the explicit form of the quantities C*° and H¥* in eq. (101). By introducing
new functions Gy *® the mentioned quantities are expressed as follows:

re=uEet: O = ‘gg[aﬂ’—;—w" 4(5:;-«“@;“4@;],

=, v = M{—G $G§:&G§~G§?],

7 om w0l sz_‘g"v [G”9+G’ +4G§+G’:;+4G§'g

et cr:ﬁg[ ty % Gly % 6L, F Gy + O,

T = uF,vf C* = ‘\/Ef‘nf[ith 17T Gy~ Gy Gg’r‘- ;

=k, 0 cf:;gz,[ + G +G§+§GQ+G;}:}:‘§HG£27
7=, 0] CT“‘%@?{:{:G%“ +G G;’gigzg]a

T =w" v C’“:IF?%[ 25 -+ +G§+%G§+G5:'i—§&agg,

where the G&* are integrals of the form

N / dpa dlp| [pf* Ai(pa, [p]) [BiYa(ps, )] Yor (4, [0)),

and A;(p4, |p|) are scalar functions; B; may be either a differential operator of the type 8/8py,
0/0|p| or a scalar function (ps = ~ipy), which are summarized in the following tabular form;



G Ai(ps; [Pl) B

1 (E — m)Mm/(|p|E?) ~Wa

5 —(E — m)mpi/(Ip|E?) 1

3 tplps 3/ 0ps

4 M ——waﬁ/ap4
5 —p; 8/0ipl

6 (E —m)(2E + 3m)ps/(|p|E) I

7 | (E — m)(E? + 2mE + 2m*)Mp4 /(p| E®) 1

8 Ipl(3E + 2m)/(2E) —wo0fOpy
9 (3E + 2m)Mpy/E 8/9ip|
10 (2F + m)ymM/[(|p|E?) —We

1 —(2E +m)mpi/(Ip|E?) 1

12 (2E2 — 2mE -~ 3m*)ps/(|p| E) 1

13 (B® — 2mE? + 4m*)Mp4/(|p| E®) 1

14 (3£ — am)ipl/(2E) ~wed[Opy
15 (3E — 4m)Mps [ E 1

16 (E — m)(TE + 3m)ps/{|p| E) 1

17 | AE — m)M(2E? — mE —mP)py/(Ip|E¥) | 1

18 Ipl(3E — m)/(2E) —~wo [ Bps
19 (3E —m)pM/E 9/91p|
20 (E —my M/[(4]p|E?) —Wa

21 ~(E —m)*pi/(|p|E*) 1

22 Ipl/(2E) —Wa

23 (TE? + 2mE — 3m*)ps f(|p|E) 1

24 (4E° + 3mE? — m®)Mp, /{|p| £°) 1

25 (E? + mE + m?) M/(4|p|E?) ~Wey

26 —(E? + mE +m%)pl/(|plE?) 1

97 (3E + 2m)p, | 0/0|p]
28 (3E — 4m)pq 3/0lp|
29 (38 —m)p, 2/9lp|

Analogously, the functions H;' “(H®™ = H?) are of the same structure as G with

i Adpslpl) Bl i Adpslpl) B
1 I(1-m/E) w.| 6 Mm?/E? 1
2 J1~-M/2E) wall T —pim/E® 1
3 ~pa/ E 118 pam® [ E° 1
4 pam/E LS  |pPm/E  8/0ps
5 1/2 we |10 Iplpam/E  2/0ip|
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Table 1: The deuteron partial emplitudes and their transformation properties.

L P AV, [ Ao [ A | TO | T | Ts
L 114110121 i0]2
S joloejrl1i1]1i1 ]
K 1+ i+ +l+1+]|-1+]+
O+ =14+ +i+|~i+]+

Table 2: The pseudo-probabilities of the partial waves in the deuteron.

wave ut wt - w™
Po(%) | 95.014 | 5.106 | —0.002 | ~0.003
wave ve vf 1-).;’ [
Po(%) | —0.010 | —0.082 | —0.015 | 0.008

Table 3: Spin-angular functions Iﬂ"ﬁ,( for the deuteron channel.

& V8 f‘;
351 - é.M
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relativistic (BS)
~~~~~ non-relativistic (Bonn)
----------- non-relativistic (Paris)

Figure 1: The nucleon density in the deuteron computed within the BS formalism in com-

parison with the nonrelativistic resuit_s.
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Figure 2: The nucleon spin distribution in the deuteron computed within the BS formalism

in comparison with the nonrelativistic results.
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Figure 3: The momentum dependence of the 357 component defined by eq. (55) (solid line)
in comparison with the corresponding nonrelativistic wave functions with Bonn and Paris
potentials (dotted and dashed lines, respectively).
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Figure 4: The momentum dependence of the *D{* component. The solid line {BS-I) depicts
the result of computation by (55); the dotted line (BS-II) includes the contribution of P waves
{sce text); short-dashed and long-dashed lines depict the nonrelativistic wave functions with
Bonn and Paris potentials, respectively.
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Figure 5: The momentum dependence of the P waves defined by eq. (55).
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Figure 6: The behavior of the vertex function G{py, |p|) for the 857+ configuration in the

deuteron in dependence on py and |p|.
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Figure 8: The nonrelativistic limit of the 3577 component defined by eq. (84) (solid line} in
comparison with the nonrelativistic wave functions with Bonn and Paris potentials {dotted
and dashed lLines, respectively}.
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Figure 9: The same as fig. 8 but for the *D7 " components.
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