76 research outputs found
Entamoeba lysyl-tRNA Synthetase Contains a Cytokine-Like Domain with Chemokine Activity towards Human Endothelial Cells
Immunological pressure encountered by protozoan parasites drives the selection of strategies to modulate or avoid the immune responses of their hosts. Here we show that the parasite Entamoeba histolytica has evolved a chemokine that mimics the sequence, structure, and function of the human cytokine HsEMAPII (Homo sapiens endothelial monocyte activating polypeptide II). This Entamoeba EMAPII-like polypeptide (EELP) is translated as a domain attached to two different aminoacyl-tRNA synthetases (aaRS) that are overexpressed when parasites are exposed to inflammatory signals. EELP is dispensable for the tRNA aminoacylation activity of the enzymes that harbor it, and it is cleaved from them by Entamoeba proteases to generate a standalone cytokine. Isolated EELP acts as a chemoattractant for human cells, but its cell specificity is different from that of HsEMAPII. We show that cell specificity differences between HsEMAPII and EELP can be swapped by site directed mutagenesis of only two residues in the cytokines' signal sequence. Thus, Entamoeba has evolved a functional mimic of an aaRS-associated human cytokine with modified cell specificity
Body mass index and dental caries in children and adolescents : a systematic review of literature published 2004 to 2011
The objectiveThe authors undertook an updated systematic review of the relationship between body mass index and dental caries in children and adolescents.MethodThe authors searched Medline, ISI, Cochrane, Scopus, Global Health and CINAHL databases and conducted lateral searches from reference lists for papers published from 2004 to 2011, inclusive. All empirical papers that tested associations between body mass index and dental caries in child and adolescent populations (aged 0 to 18 years) were included.ResultsDental caries is associated with both high and low body mass index.ConclusionA non-linear association between body mass index and dental caries may account for inconsistent findings in previous research. We recommend future research investigate the nature of the association between body mass index and dental caries in samples that include a full range of body mass index scores, and explore how factors such as socioeconomic status mediate the association between body mass index and dental caries.<br /
High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies
Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms
Clear and independent associations of several HLA-DRB1 alleles with differential antibody responses to hepatitis B vaccination in youth
To confirm and refine associations of human leukocyte antigen (HLA) genotypes with variable antibody (Ab) responses to hepatitis B vaccination, we have analyzed 255 HIV-1 seropositive (HIV+) youth and 80 HIV-1 seronegatives (HIV−) enrolled into prospective studies. In univariate analyses that focused on HLA-DRB1, -DQA1, and -DQB1 alleles and haplotypes, the DRB1*03 allele group and DRB1*0701 were negatively associated with the responder phenotype (serum Ab concentration ≥ 10 mIU/mL) (P = 0.026 and 0.043, respectively). Collectively, DRB1*03 and DRB1*0701 were found in 42 (53.8%) out of 78 non-responders (serum Ab <10 mIU/mL), 65 (40.6%) out of 160 medium responders (serum Ab 10–1,000 mIU/mL), and 27 (27.8%) out of 97 high responders (serum Ab >1,000 mIU/mL) (P < 0.001 for trend). Meanwhile, DRB1*08 was positively associated with the responder phenotype (P = 0.010), mostly due to DRB1*0804 (P = 0.008). These immunogenetic relationships were all independent of non-genetic factors, including HIV-1 infection status and immunodeficiency. Alternative analyses confined to HIV+ youth or Hispanic youth led to similar findings. In contrast, analyses of more than 80 non-coding, single nucleotide polymorphisms within and beyond the three HLA class II genes revealed no clear associations. Overall, several HLA-DRB1 alleles were major predictors of differential Ab responses to hepatitis B vaccination in youth, suggesting that T-helper cell-dependent pathways mediated through HLA class II antigen presentation are critical to effective immune response to recombinant vaccines
Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy
BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to 300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m 2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years
Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery
BACKGROUND: The intracellular delivery of enzymes for therapeutic use has a promising future for the treatment of several diseases such as genetic disorders and cancer. Virus-like particles offer an interesting platform for enzymatic delivery to targeted cells because of their great cargo capacity and the enhancement of the biocatalyst stability towards several factors important in the practical application of these nanoparticles. RESULTS: We have designed a nano-bioreactor based on the encapsulation of a cytochrome P450 (CYP) inside the capsid derived from the bacteriophage P22. An enhanced peroxigenase, CYPBM3, was selected as a model enzyme because of its potential in enzyme prodrug therapy. A total of 109 enzymes per capsid were encapsulated with a 70 % retention of activity for cytochromes with the correct incorporation of the heme cofactor. Upon encapsulation, the stability of the enzyme towards protease degradation and acidic pH was increased. Cytochrome P450 activity was delivered into Human cervix carcinoma cells via transfecting P22-CYP nanoparticles with lipofectamine. CONCLUSION: This work provides a clear demonstration of the potential of biocatalytic virus-like particles as medical relevant enzymatic delivery vehicles for clinical applications
A computational model of invasive aspergillosis in the lung and the role of iron
BACKGROUND: Invasive aspergillosis is a severe infection of immunocompromised hosts, caused by the inhalation of the spores of the ubiquitous environmental molds of the Aspergillus genus. The innate immune response in this infection entails a series of complex and inter-related interactions between multiple recruited and resident cell populations with each other and with the fungal cell; in particular, iron is critical for fungal growth. RESULTS: A computational model of invasive aspergillosis is presented here; the model can be used as a rational hypothesis-generating tool to investigate host responses to this infection. Using a combination of laboratory data and published literature, an in silico model of a section of lung tissue was generated that includes an alveolar duct, adjacent capillaries, and surrounding lung parenchyma. The three-dimensional agent-based model integrates temporal events in fungal cells, epithelial cells, monocytes, and neutrophils after inhalation of spores with cellular dynamics at the tissue level, comprising part of the innate immune response. Iron levels in the blood and tissue play a key role in the fungus’ ability to grow, and the model includes iron recruitment and consumption by the different types of cells included. Parameter sensitivity analysis suggests the model is robust with respect to unvalidated parameters, and thus is a viable tool for an in silico investigation of invasive aspergillosis. CONCLUSIONS: Using laboratory data from a mouse model of invasive aspergillosis in the context of transient neutropenia as validation, the model predicted qualitatively similar time course changes in fungal burden, monocyte and neutrophil populations, and tissue iron levels. This model lays the groundwork for a multi-scale dynamic mathematical model of the immune response to Aspergillus species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0275-2) contains supplementary material, which is available to authorized users
Coronary artery-bronchial artery fistulas: report of two Dutch cases with a review of the literature
- …