3,422 research outputs found

    Selection bias: neighbourhood controls and controls selected from those presenting to a Health Unit in a case control study of efficacy of BCG revaccination.

    Get PDF
    BACKGROUND: In most case control studies the hardest decision is the choice of the control group, as in the ideal control group the proportion exposed is the same as in the population that produced the cases. METHODS: A comparison of two control groups in a case control study of the efficacy of BCG revaccination. One group was selected from subjects presenting to the heath unit the case attended for routine prevention and care; the second group was selected from the neighbourhood of cases. All Health Units from which controls were selected offered BCG revaccination. Efficacy estimated in a randomized control trial of BCG revaccination was used to establish that the neighbourhood control group was the one that gave unbiased results. RESULTS: The proportion of controls with scars indicating BCG revaccination was higher among the control group selected from Health Unit attenders than among neighbourhood controls. This excess was not removed after control for social variables and history of exposure to tuberculosis, and appears to have resulted from the fact that people attending the Health Unit were more likely to have been revaccinated than neighbourhood controls, although we can not exclude an effect of other unmeasured variables. CONCLUSION: In this study, controls selected from people presenting to a Health Unit overrepresented exposure to BCG revaccination. Had the results from the HU attenders control group been accepted this would have resulted in overestimation of vaccine efficacy. When the exposure of interest is offered in a health facility, selection of controls from attenders at the facility may result in over representation of exposure in controls and selection bias

    Evolutionary implications of microplastics for soil biota

    Get PDF
    This is the author accepted manuscript. The final version is available from CSIRO Publishing via the DOI in this recordMicroplastic pollution is increasingly considered to be a factor of global change: in addition to aquatic ecosystems, this persistent contaminant is also found in terrestrial systems and soils. Microplastics have been chiefly examined in soils in terms of the presence and potential effects on soil biota. Given the persistence and widespread distribution of microplastics, it is also important to consider potential evolutionary implications of the presence of microplastics in soil; we offer such a perspective for soil microbiota. We discuss the range of selection pressures likely to act upon soil microbes, highlight approaches for the study of evolutionary responses to microplastics, and present the obstacles to be overcome. Pondering the evolutionary consequences of microplastics in soils can yield new insights into the effects of this group of pollutants, including establishing ‘true’ baselines in soil ecology, and understanding future responses of soil microbial populations and communities.MR acknowledges support from the ERC Advanced Grant ‘Gradual Change’ (694368). UK received funding from the European Union's Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement no. 751699

    Gelation, clustering, and crowding in the electrical double layer of ionic liquids.

    Get PDF
    Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. [J. Phys. Chem. B 125, 2677 (2021)] developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible (Cayley tree) clusters and a percolating ionic network (gel). Here, we adopt and develop this approach to understand the associations of ILs in the electrical double layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the overscreening to crowding transition

    Dataset on SARS-CoV-2 non-pharmaceutical interventions in Brazilian municipalities

    Get PDF
    Brazil has one of the fastest-growing COVID-19 epidemics worldwide. Non-pharmaceutical interventions (NPIs) have been adopted at the municipal level with asynchronous actions taken across 5,568 municipalities and the Federal District. This paper systematises the fragmented information on NPIs reporting on a novel dataset with survey responses from 4,027 mayors, covering 72.3% of all municipalities in the country. This dataset responds to the urgency to track and share findings on fragmented policies during the COVID-19 pandemic. Quantifying NPIs can help to assess the role of interventions in reducing transmission. We offer spatial and temporal details for a range of measures aimed at implementing social distancing and the dates when these measures were relaxed by local governments

    Polar liquids at charged interfaces: A dipolar shell theory

    Get PDF
    The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular properties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the characteristic decay lengths of molecular and ionic profiles at the interface

    Evolutionary plasticity determination by orthologous groups distribution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic plasticity may be understood as the ability of a functional gene network to tolerate alterations in its components or structure. Usually, the studies involving gene modifications in the course of the evolution are concerned to nucleotide sequence alterations in closely related species. However, the analysis of large scale data about the distribution of gene families in non-exclusively closely related species can provide insights on how plastic or how conserved a given gene family is. Here, we analyze the abundance and diversity of all Eukaryotic Clusters of Orthologous Groups (KOG) present in STRING database, resulting in a total of 4,850 KOGs. This dataset comprises 481,421 proteins distributed among 55 eukaryotes.</p> <p>Results</p> <p>We propose an index to evaluate the evolutionary plasticity and conservation of an orthologous group based on its abundance and diversity across eukaryotes. To further KOG plasticity analysis, we estimate the evolutionary distance average among all proteins which take part in the same orthologous group. As a result, we found a strong correlation between the evolutionary distance average and the proposed evolutionary plasticity index. Additionally, we found low evolutionary plasticity in <it>Saccharomyces cerevisiae </it>genes associated with inviability and <it>Mus musculus </it>genes associated with early lethality. At last, we plot the evolutionary plasticity value in different gene networks from yeast and humans. As a result, it was possible to discriminate among higher and lower plastic areas of the gene networks analyzed.</p> <p>Conclusions</p> <p>The distribution of gene families brings valuable information on evolutionary plasticity which might be related with genetic plasticity. Accordingly, it is possible to discriminate among conserved and plastic orthologous groups by evaluating their abundance and diversity across eukaryotes.</p> <p>Reviewers</p> <p>This article was reviewed by Prof Manyuan Long, Hiroyuki Toh, and Sebastien Halary.</p
    corecore