
Environmental Chemistry

Evolutionary implications of microplastics for soil biota

Journal:	Environmental Chemistry
Manuscript ID	EN18118.R1
Manuscript Type:	Concept
Date Submitted by the Author:	28-Aug-2018
Complete List of Authors: Rillig, Matthias; Freie Universitat Berlin Institut fur Biologie Machado, Anderson Abel; Freie Universitat Berlin Institut fur Biologie Lehmann, Anika; Freie Universitat Berlin Institut fur Biologie Klümper, Uli; University of Exeter	
Keyword:	Ecotoxicology

1 Environmental context

2

3 Microplastic particles are increasingly recognized as a human-caused pollutant in soil with

4 potential consequences for soil microorganisms. Microplastic may also have evolutionary

5 consequences for soil microbes, because these particles may alter conditions in the soil and

6 hence selection pressures. Including this evolutionary perspective may lead to new questions

7 and novel insights into responses of soil microbes to this anthropogenic stressor.

8

to periodo a series of the ser

Evolutionary implications of microplastics in soils for soil biota
Matthias C. Rillig ^{A, B*} , Anderson Abel de Souza Machado ^{A, B} , Anika Lehmann ^{A, B} , Uli
Klümper ^{C, D}
^A Freie Universität Berlin, Institut für Biologie, Altensteinstr. 6, D-14195 Berlin, Germany
^B Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin,
Germany
^c ESI & CEC, Biosciences, University of Exeter, Penryn Campus, Cornwall, United Kingdom
^D European Centre for Environment and Human Health, University of Exeter, Truro, United
Kingdom
*Corresponding author
Email: matthias.rillig@fu-berlin.de

Formatted: Font: Italic

19	Abstract
20	
21	Microplastic pollution is increasingly considered as a factor of global change: in addition to
22	aquatic ecosystems, this persistent contaminant is also found in terrestrial systems and
23	soils. Microplastic has been chiefly examined in soils in terms of presence and potential
24	effects on soil biota. Given the persistence and widespread distribution of microplastic, it is
25	also important to consider potential evolutionary implications of microplastic presence in soil;
26	we here offer such a perspective for soil microbiota. We discuss the range of selection
27	pressures likely to act upon soil microbes, highlight approaches for the study of evolutionary
28	responses to microplastic, and point out obstacles to overcome. Pondering evolutionary
29	consequences of microplastic in soils can yield new insights into the effects of this group of
30	pollutants, including establishing 'true' baselines in soil ecology, and understanding future
31	responses of soil microbial populations and communities.
32	
33	Keyword: Ecotoxicology <u>(if allowed, further keywords: microplastic, soil, microbiota.</u>
34	evolution, selection pressures) Introduction
35	
36	
37	Introduction
38	
39	Microplastics are emerging as a factor of global change. These particles, generally defined
40	as plastic < 5mm (or 1mm), have been found in a range of environments, including
41	freshwater ecosystems (Li et al. 2018a), the oceans, arctic sea ice (Peeken et al. 2018), and
42	also in terrestrial ecosystems and the soil (Rillig 2012; Horton et al. 2017; Machado et al.
43	2018a). Current studies in soils focus on documenting the extent of pollution (e.g., Scheurer
44	& Bigalke 2018), with data from soil lagging far behind our knowledge about oceans, where
45	research has started a decade earlier (Thompson et al. 2004). Research has also started to
	document potential effects of microplastic particles on individual soil biota, for example

47 earthworms (Huerta-Lwanga et al. 2017). Such studies are primarily aimed at understanding48 potential ecological consequences of this novel group of contaminants.

49

50 However, given the widespread - and likely long-term - presence of microplastic in the

51 environment, it is also important to start considering evolutionary consequences. These have

52 so far not been discussed, except perhaps in the context of the discovery of plastic-

53 degrading microbes (Yoshida et al. 2016).

54

55 Here we discuss various aspects of selection pressures likely to act upon soil microbes (Fig. 56 1); we introduce approaches for the study of evolutionary responses, and highlight general 57 obstacles to overcome. We argue that introducing an evolutionary perspective would 58 introduce highly relevant questions to the study of these persistent contaminants in soil. 59 60 61 Selection pressures 62 63 Microplastic particles may affect a range of soil properties, which would present soil biota 64 with certain selection pressures (Fig. 1). This will lead to a shift in genotypes within 65 populations, either by selection among already existing lines, or among lines based on de 66 novo mutations; that is evolution. The question therefore becomes: how might microplastics 67 affect the environment in soil, and which organismal traits would become important as 68 targets of selection? 69 70 The most obvious factor would be microplastic as a novel resource, i.e. a source of nutrients 71 and carbon. In fact, microplastic may be a significant anthropogenic component of soil 72 organic carbon already (Rillig 2018). Plastics are often made to be inert and they typically 73 decompose very slowly; for all intents and purposes of the human time horizon they may be 74 regarded as persistent. However, microbiota (bacteria and fungi) genotypes with an ability to 75 utilize the carbon or other elements contained in microplastic may have a selective 76 advantage, and such genotypes would be expected to increase in relative abundance within 77 the population. The same is true for any other additives chemically or physically bound to the 78 plastic polymer (e.g. plasticizers), which may be contained in microplastic particles, even 79 though such effects may be relatively more short-lived. 80 81 Furthermore, microplastics display an elevated ability to absorb chemical substances, such 82 as antibiotics, heavy metals and other xenobiotics (Brennecke et al. 2016; Hirai et al. 2011; 83 Li et al. 2018b). For example, polyamides display a particularly high adsorption capacity for 84 antibiotics containing a carbonyl group like tetracycline or ciprofloxacin, since strong 85 hydrogen bonds between this carbonyl group and the microplastics amide group as a proton donor can be established (Li et al. 2018b). However, the sorption ability differs greatly 86 87 between diverse plastic materials, sorbed substances and environmental conditions (Li et al. 88 2018b). 89 Still, through, for example, increased antibiotic or heavy metal concentrations, microplastics 90 and their surroundings can constitute microniches in the soil environment with highly 91 selective conditions. In combination with potentially providing a potentially elevated novel

92 nutrient availability source they microplastics can consequently serve as so called "hot-93 spots" of horizontal gene transfer (HGT) and microbial evolution. While in water 94 environments the additional surface introduced through microplastics is the major factor in 95 enhancing plasmid transfer, plastic particles still favored microbial interactions to a larger 96 extent than natural aggregates (Arias-Andres et al. 2018). Moreover, the presence of 97 microplastics can positively alter the retention time of other introduced stressors in the soil 98 environment and thus lead to longer lasting periods of exposure and subsequent evolution to 99 these conditions (Sun et al. 2018). 100 101 Microplastics also have the potential to change the soil physical environment. The soil 102 physical environment is governed by soil aggregation, a process to which many soil biota 103 contribute (Lehmann et al. 2017). Soil aggregates are relatively stable entities whose 104 interiors contain microhabitats with often drastically different conditions to those on 105 aggregate surfaces. Such temporarily stable structures have recently been conceptualized 106 as massively concurrent evolutionary incubators for microbes (Rillig et al. 2017a), meaning 107 that evolutionary processes and trajectories within aggregates are different compared to 108 those in a non-structured soil. Following this concept, any changes in soil aggregation, that 109 is processes affecting rates of formation, stabilization or disintegration of aggregates, could 110 also be expected to have consequences for microbial evolution. Microplastic, probably 111 especially linear fibers, could have effects on these processes. A change in soil aggregation 112 and, corresponding to these, pore distributions, could have multiple evolutionary 113 consequences within communities that are currently difficult to predict in terms of traits and 114 directions. In fact, changes in soil structure and pore spaces may even lead to local 115 extinction because of microhabitat loss (Veresoglou et al. 2015). Recently, effects of 116 microfibers on soil aggregation were demonstrated experimentally (Machado et al. 2018b), together with accompanying changes in bulk density and water holding capacity. 117 118 119 Many soil microbes interact strongly with hosts, including soil animals. Soil animals, in turn, 120 may also interact with microplastics: earthworms have been shown to ingest polystyrene 121 beads (Rillig et al. 2017b; Huerta Lwanga et al. 2016, 2017), and some studies have shown 122 deleterious effects on earthworms (Huerta Lwanga et al. 2016). From earthworm guts, 123 microbes specialized in degrading microplastic compounds have been isolated (Huerta

Lwanga et al. 2018), which could be part of a newly evolved complex host-symbiont

125 interaction in response to microplastic pollution in soils. Similarly, other soil animals may

126 also consume these particles (e.g. Collembola; Zhu et al. 2018), with alteration in their

127 associated microbiota. As such, we expect cascading effects of microplastic on microbiota

128 evolution via effects on hosts.

130	When microplastics break down further to even smaller particles, such particles may enter		
131	the nanosize range (< 0.1 micrometer). Such nanoplastic particles may have very different		
132	properties, for example they may be able to traverse biological membranes and thus acquire		
133	toxic properties (Machado et al. 2018). Genotypes better resisting such effects would be		
134	expected to increase in abundance. These changes in community structure can further alter		
135	the complex interplay of microbial processes in the soil environment. For example, in an		
136	anaerobic digestion system the exposure to polystyrene nanoparticles caused an inhibition		
137	in community wide productivity linked with significant changes in microbial community		
138	structure (Fu et al. 2018), likely also observable in soil microbial communities.		
139			
140			
141	Approaches for the study of evolutionary responses to microplastic		
142			
143	Several approaches are available for the study of evolutionary responses of soil biota to		
144	microplastic: experimental evolution in the lab, resurrection ecology, and observational		
145	studies using gradients.		
146			
147	Experimental evolution studies have a long tradition in microbial biology (e.g. Lenski et al.		
148	1991; Buckling et al. 2000). Such studies use serial transfers in the laboratory to study		
149	effects of a certain evolutionary driver. One could test using such systems if traits predicted		
150	to be favored by the presence of microplastic increase in abundance through time. In		
151	addition, monitoring abundance of certain genes may be promising. Through its horizontal		
152	mobility across bacterial species and linkage to genes conferring diverse resistance		
153	phenotypes the relative abundance of the class 1 integron-integrase gene intl1 is widely		
154	considered as a proxy to measure the level of and the selective pressure associated with		
155	anthropogenic pollution (Gillings et al. 2014). In environmental studies it might pose		
156	extremely difficult to disentangle the influence of microplastics on intl1 abundance from that		
157	of other potentially stronger selective agents such as antibiotic or heavy metal residues or		
158	human associated microbial pollution (Amos et al. 2015). However, in controlled experiments		
159	microplastics have already shown to increase the persistence of intl1 from treated		
160	wastewater when entering a freshwater microbial community (Eckert et al. 2018).		
161	Consequently, intl1 could provide a promising target to quantitatively measure the selective		
162	pressures imposed on soil microbial communities through the addition of microplastic		
163	particles in experimental evolution experiments.		
164			

Another promising approach may be resurrection ecology (Franks et al. 2018). This is an 166 approach where extant populations are compared with historical populations, which can be 167 reanimated ('resurrected') from historical samples. In our case, this would entail the use of 168 soil archives, for example from agricultural experiment stations, that include samples 169 collected prior to the widespread use of plastics. Populations extracted from such historical 170 samples could be compared to extant populations from the same soil, with the caveat that other factors influencing the evolution of the target organisms may have changed 171 172 concurrently. 173 174 Observational studies along established gradients of contamination, which share this basic 175 limitation with resurrection studies, can also be used to learn about evolutionary responses 176 of populations to the presence of microplastic. Here, correlations can be used to test for the 177 link between predicted favored traits and their relative abundance in populations along a 178 microplastic contamination gradient. 179 180 181 Obstacles to overcome 182 183 The single most challenging aspect of studying microplastic is likely its diversity: microplastic 184 comes in a bewildering range and combination of chemical forms, sizes, surface properties, 185 shapes and modifications (e.g. additives). Therefore, this is very much not like studying 186 specific contaminants, but this work encompasses a whole group of substances, additives 187 and sizes with likely very different effects. For example, effects of beads, films and fibers on 188 soil and soil microbes might be quite different. This imposes significant challenges on the 189 external validity of any study, since by necessity these will be limited to few plastic types for 190 logistical reasons. 191 192 For the understanding of evolutionary dynamics of microplastic pollution in soil, it is 193 important to realize that this is a gradually changing factor: microplastic arrives via various 194 processes at the soil surface, and it then accumulates gradually in the soil, because of 195 limited rates of decomposition. This means that, in any given soil, soil biota are not abruptly 196 exposed to high concentrations of microplastic particles, which tends to be the current 197 practice in experimental approaches aimed at elucidating ecological or physiological effects. 198 Thus, it may also be useful to gradually expose soils and their biota to microplastic in 199 experiments; evolutionary dynamics in response to gradual vs. abrupt changes in the

- 200 environment are expected to differ significantly.
- 201

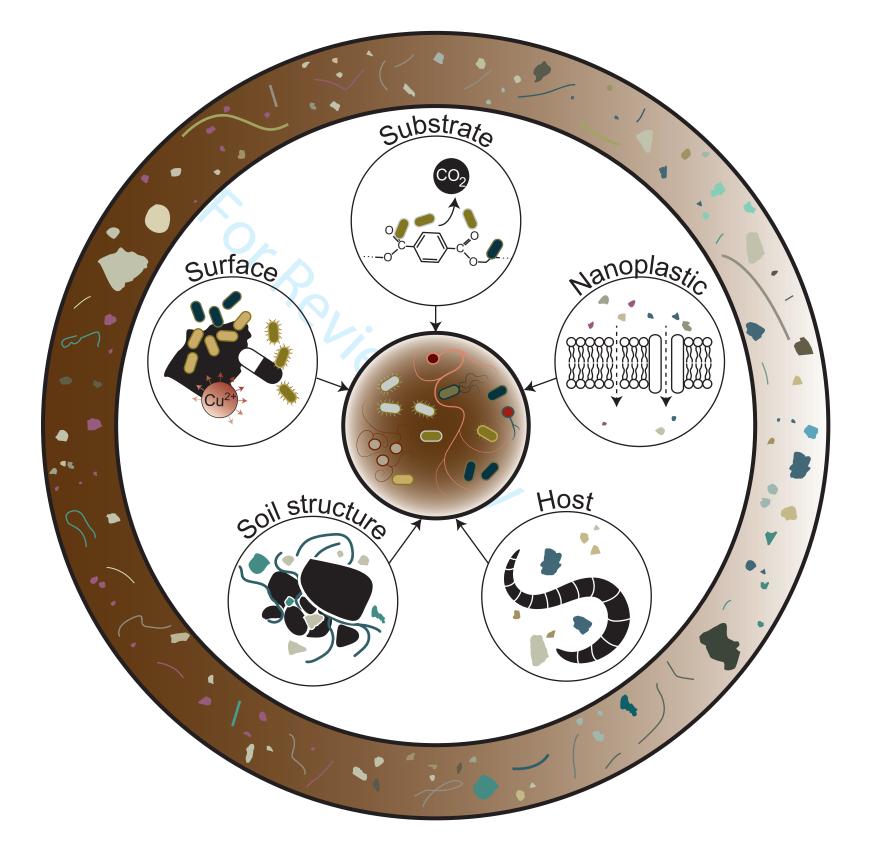
202	We here focus on soil microbes, because they are eminently tractable experimentally.
203	However, soil biota are enigmatically diverse and contain entire food webs. It is thus risky to
204	focus on only particular groups of biota, since microplastic may modify trophic interactions,
205	thus exerting differential top-down effects. Such effects would potentially be extremely
206	important to gauge evolutionary responses; however, it is a real challenge to capture the
207	entirety of soil biodiversity.
208	
209	Finally, technical challenges remain, chiefly in respect to adequately quantifying types and
210	amounts of microplastics in the soil matrix. These are certainly not unique to studies with an
211	evolutionary focus, but will also limit such studies, for example as far as observational
212	studies are concerned, and in terms of establishing true baseline levels of contamination in
213	experiments.
214	Concluding remarks
215	Concluding remarks
216	
217	Pondering evolutionary consequences of microplastic in soils can lead to new questions
218	(Table 1) and yield new insights into the effects of this group of pollutants. On the one hand,
219	by studying selection pressures experienced by a range of soil biota we learn about the
220	ways soil biota may adapt in future soils. Importantly, this can also include interactions with
221	other factors of global change. On the other hand, when we now measure soil biota traits or
222	process rates, we may actually already be unknowingly capturing such responses: this
223	therefore becomes an issue of understanding 'true' baselines in soil biology.
224	
225	Much of what we discuss here may also be applicable to aquatic systems; however, there
226	the provision of a surface will likely be a dominant factor (Arias-Andres et al. 2018), with the
227	possibility of novel interactions in the particle eco-corona, including plasmid exchange.
228	
229	
230	Acknowledgements
231	MR acknowledges support from the ERC Advanced Grant 'Gradual Change' (694368).
232	UK received funding from the European Union's Horizon 2020 research and innovation
233	program under Marie Skłodowska-Curie grant agreement no. 751699.
234	
235	
236	Conflicts of interest
237	The authors declare no conflicts of interest.
238	

239	References
240	
241	Amos GC, Gozzard E, Carter CE, Mead A, Bowes MJ, Hawkey PM, Zhang L, Singer
242	AC, Gaze WH, Wellington EMH (2015). Validated predictive modelling of the
243	environmental resistome. ISME Journal 9, 1467–1476.
244	doi.org/10.1038/ismej.2014.237
245	Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart H-P (2018). Microplastic
246	pollution increases gene exchange in aquatic ecosystems. Environmental Pollution
247	237. doi.org/10.1016/j.envpol.2018.02.058
248	Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016). Microplastics as
249	vector for heavy metal contamination from the marine environment. Estuarine,
250	Coastal and Shelf Science 178, 189–195. doi.org/10.1016/j.ecss.2015.12.003
251	Buckling A, Kassen R, Bell G, Rainey PB (2000). Disturbance and diversity in
252	experimental microcosms. Nature 408, 961–964. doi.org/10.1038/35050080
253	Eckert EM, Di Cesare A, Kettner MT, Arias-Andres M, Fontaneto D, Grossart HP,
254	Corno G (2018). Microplastics increase impact of treated wastewater on
255	freshwater microbial community. Environmental Pollution 234, 495–502.
256	doi.org/10.1016/j.envpol.2017.11.070
257	Franks SJ, Avise JC, Bradshaw WE, Conner JK, Etterson JR, Mazer SJ, Shaw RG,
258	Weis AE (2008). The Resurrection Initiative: storing ancestral genotypes to
259	capture evolution in action. Bioscience 58, 870–873. doi.org/10.1641/B580913
260	Fu SF, Ding JN, Zhang Y, Li YF, Zhu R, Yuan XZ, Zou H (2018). Exposure to
261	polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Science
262	of the Total Environment 625, 64–70. doi.org/10.1016/j.scitotenv.2017.12.158
263	Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG (2015). Using the class
264	1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal 9,
265	1269–1279. doi.org/10.1038/ismej.2014.226
266	Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C,
267	Gray H, Laursen D, Zettler ER, Farrington JW, Reddy CM, Peacock EE, Ward MW
268	(2011). Organic micropollutants in marine plastics debris from the open ocean and
269	remote and urban beaches. Marine Pollution Bulletin 62, 1683–1692.
270	doi.org/10.1016/j.marpolbul.2011.06.004
271	Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017). Microplastics in
272	freshwater and terrestrial environments: Evaluating the current understanding to
273	identify the knowledge gaps and future research priorities. Science of the Total
274	Environment 586, 127-141. doi.org/10.1016/j.scitotenv.2017.01.190

275	Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M,	
276	Besseling E, Koelmans AA, Geissen V (2017). Incorporation of microplastics from	
277	litter into burrows of Lumbricus terrestris. Environmental Pollution 220, 523–531.	
278	doi.org/10.1016/j.envpol.2016.09.096	
279	Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, Van Der Ploeg M,	
280	Besseling E, Koelmans AA, Geissen V (2016). Microplastics in the terrestrial	
281	ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).	
282	Environmental Science and Technology 50, 2685–2691.	
283	doi.org/10.1021/acs.est.5b05478	
284	Huerta Lwanga E, Thapa B, Yang X, Gertsen H, Salánki T, Geissen V, Garbeva P	
285	(2018). Decay of low-density polyethylene by bacteria extracted from earthworm's	
286	guts: A potential for soil restoration. Science of the Total Environment 624, 753-	
287	757. doi.org/10.1016/j.scitotenv.2017.12.144	
288	Lehmann A, Zheng W, Rillig MC (2017). Soil biota contributions to soil aggregation.	
289	Nature Ecology & Evolution 1, 1828–1835. doi.org/10.1038/s41559-017-0344-y	
290	Lenski RE, Rose MR, Simpson SC, Tadler SC (1991). Long-term experimental	
291	evolution in Escherichia coli. I. Adaptation and divergence during 2,000	
292	generations. American Naturalist 138, 1315–1341. doi.org/10.1086/285289	
293	Li J, Liu H, Paul Chen J (2018a). Microplastics in freshwater systems: A review on	
294	occurrence, environmental effects, and methods for microplastics detection. Water	
295	Research 137, 362–374. doi.org/10.1016/j.watres.2017.12.056	
296	Li J, Zhang K, Zhang H (2018b). Adsorption of antibiotics on microplastics.	
297	Environmental Pollution 237, 460–467. doi.org/10.1016/j.envpol.2018.02.050	
298	Machado AAS, Kloas W, Zarfl C, Hempel S, Rillig MC (2018 <u>a</u>). Microplastics as an	
299	emerging threat to terrestrial ecosystems. Global Change Biology 24, 1405–1416.	
300	doi.org/10.1111/gcb.14020	
301	Machado AAS, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC (2018b).	 Formatted: German (Germany)
302	Impacts of microplastic on the soil biophysical environment. Environmental	 Formatted: English (U.S.)
303	Science and Technology, doi.org/10.1021/acs.est.8b02212	 Formatted: Font: Italic, English (U.S.)
304	Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C, Krumpen T, Bergmann M,	 Formatted: English (U.S.) Formatted: German (Germany)
305	Hehemann L, Gerdts G (2018). Arctic sea ice is an important temporal sink and	
306	means of transport for microplastic. Nature Communications 9, 1505.	
307	doi.org/10.1038/s41467-018-03825-5	
308	Rillig MC (2012). Microplastic in terrestrial ecosystems and the soil? Environmental	
309	Science and Technology 46, 6453–6454. doi.org/10.1021/es302011r	
310	Rillig MC (2018). Microplastic disguising as soil carbon storage. Environmental Science	
311	and Technology 2–3. doi.org/10.1021/acs.est.8b02338	

312	Rillig MC, Muller LAH, Lehmann A (2017a). Soil aggregates as massively concurrent
313	evolutionary incubators. ISME Journal 11, 1943–1948.
314	doi.org/10.1038/ismej.2017.56
315	Rillig MC, Ziersch L, Hempel S (2017b). Microplastic transport in soil by earthworms.
316	Scientific Reports 7, 1362. doi.org/10.1038/s41598-017-01594-7
317	Scheurer M, Bigalke M (2018). Microplastics in Swiss floodplain soils. Environmental
318	Science and Technology 52, 3591–3598. doi.org/10.1021/acs.est.7b06003
319	Sun M, Ye M, Jiao W, Feng Y, Yu P, Liu M, Jiao J, He X, Liu K, Zhao Y, Wu J, Jiang X,
320	Hu F (2018). Changes in tetracycline partitioning and bacteria/phage-comediated
321	ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid.
322	Journal of Hazardous Materials 345 , 131–139.
323	doi.org/10.1016/j.jhazmat.2017.11.036
324	Thompson RC, Olson Y, Mitchell RP, Davis A, Rowland SJ, John AWG, McGonigle D,
325	Russell AE (2004). Lost at Sea: Where is all the plastic? Science. 304, 838.
326	doi.org/10.1126/science.1094559
327	Veresoglou SD, Halley JM, Rillig MC (2015). Extinction risk of soil biota. Nature
328	Communications 6, 8862. doi.org/10.1038/ncomms9862
329	Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K,
330	Miyamoto K, Kimura Y, Oda K (2016). A bacterium that degrades and assimilates
331	poly(ethylene terephthalate). Science. 351 , 1196–1199.
332	doi.org/10.1126/science.aad6359
333	Zhu D, Chen QL, An XL, Yang XR, Christie P, Ke X, Wu LH, Zhu YG (2018). Exposure
334	of soil collembolans to microplastics perturbs their gut microbiota and alters their
335	isotopic composition. Soil Biology & Biochemistry 116 , 302–310.
336	doi.org/10.1016/j.soilbio.2017.10.027
337	doi.org/10.1016/j.soilbio.2017.10.027
338	

Table 1 Examples of questions on evolutionary consequences of microplastic contamination


340 in soils.

Question	Explanation/ background
Has the presence of microplastic in soil already affected evolutionary trajectories of soil microbiota? For example, has microplastic created new niches for soil microbes?	Persistence of microplastic in soil, and the finding that microplastic appears to be ubiquitous in soil samples even from relatively non-human influenced ecosystems (Scheurer & Bigalke 2018)
Can evolutionary changes to microplastic within populations buffer against or exacerbate changes in microbial community composition? How do these changes interact with phenotypic plasticity?	Eco-evolutionary dynamics
Does microplastic lead to local extinctions of microbial populations?	Changes in soil physical structure (as a consequence of possible effects on soil aggregation) can lead to local exclusion of biota, for example soil animals, which may host specific microbes (Veresoglou et al. 2015; Zhu et al. 2018)
How does microplastic (and microplastic type) interact with other evolutionary drivers affecting soil microbial populations?	Global change is inherently a multifactorial phenomenon; also within cities or on agricultural fields there are multiple evolutionary drivers that co-occur with microplastic contamination

348 Figure legends:

349 350

351 Figure 1. Drivers of potential evolutionary effects of microplastics on soil microbes. The 352 outer ring depicts microplastic particles of various properties (including size, shape, 353 chemistry). Microbial communities (in the center) experience various effects triggered by 354 microplastic particles. Typical impacts with evolutionary consequences include potential 355 changes in soil structure, alteration of host availability or function (host microbiome), epre. d. including 356 nanoplastic toxic effects, plastic particles representing a resource, and providing novel 357 surfaces (with various chemicals attached, including heavy metals and antibiotics). 358 359

http://www.publish.csiro.au/en