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ABSTRACT
The structure of polar liquids and electrolytic solutions, such as water and aqueous electrolytes, at interfaces underlies numerous phenomena
in physics, chemistry, biology, and engineering. In this work, we develop a continuum theory that captures the essential features of dielectric
screening by polar liquids at charged interfaces, including decaying spatial oscillations in charge and mass, starting from the molecular prop-
erties of the solvent. The theory predicts an anisotropic dielectric tensor of interfacial polar liquids previously studied in molecular dynamics
simulations. We explore the effect of the interfacial polar liquid properties on the capacitance of the electrode/electrolyte interface and on
hydration forces between two plane-parallel polarized surfaces. In the linear response approximation, we obtain simple formulas for the
characteristic decay lengths of molecular and ionic profiles at the interface.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0096439

I. INTRODUCTION

Polar liquids, such as water, are ubiquitous in all areas of sci-
ence and engineering, including biological media,1,2 electrochemical
interfaces,3 colloids,4,5 synthetic membranes,6,7 and lubrication.8,9

At charged interfaces, the structure of polar liquids governs the
screening of charge by ions in the electrical double layer.10 The
key and still not fully understood feature here is the interplay
between the molecular structure of the solvent and the correlations
in ionic subsystems. Theoretical models of interfacial polar liquids
are, therefore, critical in the design and understanding of electrified
interfaces.

Typically, the dielectric properties of interfacial polar liquids
are lumped into two main regions of the electrical double layer:
(i) the diffuse layer first described by Gouy and Chapman11,12 in
which diffuse ionic charges screen the surface charge and (ii) the
Stern layer exclusively composed of solvent molecules adjacent to
the interface,13 represented as a layer of depressed dielectric con-
stant and fixed thickness.14 In the diffuse layer, the solvent dielectric
constant is usually chosen as its bulk value, and the ions are treated

as dilute point charges in the standard Poisson–Boltzmann form.
While such a general approach describes numerous electrochemi-
cal measurements, the Gouy–Chapman–Stern (GCS) representation
does not capture the microscopic details of the structuring of the
fluid near the surface15–18 nor the electric-field dependent response
of the polar solvent.19,20 One clear shortcoming of the GCS model
is its failure to describe oscillatory profiles seen in hydration force
measurements21 and x-ray synchrotron-radiation assessed atomic
distribution profiles.22–24

A plethora of modifications to the Poisson–Boltzmann the-
ory have been proposed to include the correlated structure and
crowding of ions at an interface, usually based on theories of inho-
mogeneous hard sphere fluids.14,25,26 Applications of such theories
to electrolytes usually ignore the solvent molecules by treating
the fluid as a constant permittivity medium, ϵ, with hard-sphere
ions, the so-called primitive model.27–29 While such a model can
describe the long-range behavior of dilute electrolytes, it does
not capture the short-wavelength structuring of the solvent that
affects electrostatic interactions between the ions at a nanometer
scale.
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In fact, simulations and indirect experimental evidence have
demonstrated that the bulk dielectric response of water is nonlo-
cal at short distances. Thus, the studied wave-number dependent
static dielectric tensor of water has revealed singularities at short
wavelengths, giving rise to the phenomenon of overscreening and
alternating bound charges of the polar solvent in response to exter-
nal perturbation.30–33 At interfaces, molecular dynamics simulations
of interfacial water have shown similar overscreening signatures
with singularities in the normal component of the anisotropic static
dielectric tensor.18,34–38

To incorporate the dipolar nature of the solvent, a mean-field
dipolar Poisson–Boltzmann equation has been developed20 and fur-
ther extended in Refs. 39–42. These mean-field dipolar models have
not yet captured the overscreening signatures of dipolar molecules
at interfaces. Theoretical analysis including the overscreening phe-
nomenon by polar liquids has mainly been limited to situations
in which the nonlocal permittivity tensor can be included as an
input43–45 or through effective Landau–Ginzburg models or field
theoretic models.32,33,46 These approaches, while generally accurate
in comparison to simulations and capable of capturing important
features of hydration forces, are not derived from the molecular
properties of the solvent and require assumptions to match the bulk
screening to the interface.

On the other hand, sophisticated molecular theories including
the reference interaction site model (RISM) can accurately predict
the spatially correlated structures of polar liquids in the bulk and
near interfaces.47–56 Due to the complexity of the integral equations
involved in solving these theories, some of the analytical tractability
and physical transparency are lost in favor of model accuracy, com-
pared to local dipolar theories.20 The integral equation theories are,
therefore, difficult to incorporate directly with standard continuum
dielectric theory approaches.

Clearly, a physically transparent continuum model that incor-
porates the dipolar, molecular nature of solvent molecules to capture
the overscreening behavior at the interface would be useful for
understanding the interfacial properties of solvents, solvent mix-
tures, and electrolytes of varying ionic composition, including at
large applied voltages.

Here, we derive a modified Langevin–Poisson equation in
which we include the nonlocal dielectric response of a polar liq-
uid by employing a weighted-density functional, treating dipolar
molecules as shells of charge. The model captures many of the prop-
erties of interfacial liquids, including the overscreening of surface
charge by the dipolar solvent charges. Singularities in the normal
component of the effective static dielectric permittivity at an inter-
face emerge naturally from the theory. After analyzing pure polar
liquids, we, then, include into the theory a finite ion concentra-
tion, thus unraveling the fine double layer structure at a charged
interface. Furthermore, we apply the theory to describe the hydra-
tion forces between two charged surfaces. Finally, we derive a
formula for the hydration length, λs, which only depends on the
diameter of the solvent molecule, d, and the relative permittivity
of the liquid, ϵr , where λs = d

√
(ϵr − 1)/6, governing the decay of

the oscillations in the bound charge ordering in the polar liquid
from a surface. We will explain in this paper the assumptions used
to obtain the formula of such extraordinary simplicity, but taken
for estimates, it seems to be consistent with existing molecular
simulations.34,35,38,57,58

FIG. 1. Schematic of various systems under consideration in the application of the
dipolar shell theory. (a) A pure polar fluid between two oppositely charged surfaces
of the same magnitude, obeying overall charge neutrality. (b) A 1:1 electrolyte in
a polar solvent with ions of the same size as the dipolar molecules, again with
surfaces of equal but opposite charge. (c) A confined pure polar fluid with vary-
ing extent of confinement between walls of equal but opposite charge with varying
extent of confinement. (d) A 1:1 electrolyte confined between two walls of equal
but opposite charge with varying extent of confinement. (e) A 1:1 electrolyte con-
fined between two walls of the same charge with varying extent of confinement. (f)
Dipolar molecule, cation, and anion symbols.

In this work, we demonstrate the effects of bulk relative per-
mittivity, surface charge density magnitude from linear to nonlinear
response, extent of confinement between two surfaces, and ionic
concentration on the interfacial properties of the polar liquid. As
depicted in Fig. 1, the systems under consideration will include (a)
a pure polar liquid between oppositely charged surfaces, (b) an elec-
trolyte between two oppositely charged surfaces, (c) confined pure
polar liquids between oppositely charged surfaces, and (d) and (e)
confined electrolytes between oppositely charged surfaces and iden-
tically charged surfaces, respectively. From our theoretical analysis,
we demonstrate the importance of the molecular properties of the
polar liquid in hydration interactions and double layer capacitance
of charged interfaces.

II. THEORY
The theoretical approach presented here originates from the

model developed initially for ionic liquids of Ref. 59, to which we
now add dipolar molecules represented by hard spheres with dipo-
lar shells of charge. The model treats the equilibrium properties of
a concentrated system of dipolar shells in a manner similar to the
Langevin–Poisson theories previously described for point dipoles.20

For simplicity, we limit our analysis to the case of equally sized
ions and dipolar molecules. This system of ions and dipoles will be
positioned between two flat surfaces. We assume that the dipoles
and ions in this nanoslit are in equilibrium with a reservoir with
fixed bulk concentrations of both ions and dipoles within the grand
canonical ensemble.

A. Density functional
The theoretical framework is based on a definition of the

Helmholtz free energy functional of the system and could be classi-
fied as a classical density functional theory approach. The Helmholtz
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free energy F can be split into three parts: an ideal part F id, an
excess part accounting for excluded volume effects, F ex, and an
electrostatic part, F el,

F = F id
+F ex

+F el. (1)

As a standard definition, the ideal part of the free energy density
is given by

F id
[{ci(r)}] = ∑

i
kBT ∫ dr ci(r)[ln(Λ3

i ci(r)) − 1], (2)

where kB is the Boltzmann constant, T is the absolute temperature, ci
is the concentration of species i, and Λi is the de Broglie wavelength
for species i. The ideal part of the chemical potential for species i,
μid

i , relative to some reference bulk solution denoted as b, is, thus,
given by

βμid
i = β(

δF id

δci
−

δF id

δci
∣

b
) = ln(

ci

ci0
), (3)

where ci0 is the concentration in the bulk and β is the inverse thermal
energy, β−1

= kBT.
For the excess free energy density, we will assume that all

species are approximately spherical and equal in size, of radius R.
Here, we adopt a weighted-density approximation from Ref. 59 that
was constructed to recover the Carnahan–Starling equation of state,

F ex
[c̄i(r)] =

kBT
v ∫

dr [
1

1 − η̄
− 3η̄ +

1
(1 − η̄)2 ]. (4)

Here, v is the volume of a molecule, η = ∑ivci is the local filling
fraction, and η0 = ∑ivci0 is the bulk filling fraction. The bar nota-
tion denotes a convolution with the volumetric weighting function,
η̄ = wv ∗ η, where wv(r) = Θ(R− ∣ r ∣)/v is a Heaviside step func-
tion that only turns on within the volume of the sphere. The ∗ stands
for a convolution integral, f ∗ g = ∫ dr′ f (r′)g(r − r′). Therefore,
the excluded volume interactions appear in a non-local fashion in
the chemical potential, describing the filling within a molecular-
sized neighborhood of a point. The associated weighted excess
chemical potential, μ̄ex

i , is

βμ̄ex
i = β(

δF ex

δci
−

δF ex

δci
∣

b
)

= wv ∗(
8η̄ − 9η̄ 2

+ 3η̄ 3

(1 − η̄)3 −
8η0 − 9η2

0 + 3η3
0

(1 − η0)3 ). (5)

B. Derivation of electrostatic variables
The key development in the theory presented in this work is

the electrostatic part of the free energy. Here, we spread the ionic
charge and bound charges on dipoles over their surface so that
they act electrostatically as shells rather than points. The smeared
shell charge appears in the mean-field Poisson equation for both the
ions and the polar liquid molecules. The charged shell formulation
here evolves directly from the theory for concentrated ionic liquids

presented in Ref. 59. The approach was preceded by similar theo-
retical models for electrolytes composed of ions with intramolecular
charge distributions,60–65 as well as a charged shell representation of
the mean-spherical approximation.66–68 The charged shell approxi-
mation is applicable not only to ions and dipoles, with charge form
factors having the shape of a spherical shell, but also to hard sphere
ions and dipoles with point charges and point dipole moments at
their centers in which the electrostatic potential can only develop
beyond the ionic radius or dipolar molecule radius.

The electrostatic part of the free energy, defined in terms of
weighted densities, is, therefore, given by

F el
[ϕ, ρ̄e, P̄] = ∫ dr{−

ϵ0

2
(∇ϕ)2

+ ρ̄eϕ + P̄ ⋅ ∇ϕ}, (6)

where ϕ is the electrostatic potential, ϵ0 is the permittivity of free
space, ρ̄e = ws ∗ ρe is the weighted charge density, and P̄ = ws ∗P
is the weighted polarization vector, originating from the weighted
bound charge on the dipolar molecules, ρ̄b = ws ∗ ρb = ∇ ⋅ P̄. Here,
the convolution with the weighting function ws(r) = δ(R− ∣ r ∣)/
(4πR2

) homogenizes the charge and polarization over a spherical
shell.

Using the definition of the polarization vector, P, as the con-
centration of dipoles, cw , multiplied by their individual dipole
moments, p, we can next define the weighted polarization
vector, P̄,

P = cwp, P̄ = ws ∗ (cwp), (7)

for which there will be a distribution of dipole orientations that we
will ultimately need to average over. The electrochemical potential
of the dipole, μw , can be found by taking the variational derivative
of the free energy with respect to the dipole concentration,

βμw = ln(
cw
cw0
) + βp ⋅ ∇ϕ̄ + βμ̄ex

w. (8)

Here, ϕ̄ = ws ∗ ϕ is the weighted electrostatic potential and μ̄ex
w

= wv ∗ μex
w is the weighted excess chemical potential. Mathemati-

cally, the weighted electrostatic potential and weighted excess chem-
ical potential emerge due to the minimization of the free energy with
respect to the concentration variables, which are present in the free
energy in terms of convolutions with weighting functions. Physi-
cally, these are a result of the delocalization of bound charge over the
dipolar molecule surface and the nonlocal packing effects, respec-
tively. This procedure embeds the finite size of dipolar molecules
into the theory, which plays a key role in capturing the effects of lay-
ering and decoupling the packing periodicity from the longer range
electrostatic correlations. Thus, although this approach should still
be classified as a mean field theory, it makes an essential step toward
accounting for the molecular structure of the liquid. The dipole
concentration at a given position is, thus, given by

cw = cw0 exp(−βp ⋅ ∇ϕ̄ − βμ̄ex
w). (9)

Therefore, the local dipole concentration depends on the angle,
θ, between the dipole moment of the molecule and the weighted
electric field, E = ws ∗E = −∇ϕ̄, where
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p ⋅ ∇ϕ̄ = p0 ∣ ∇ϕ̄ ∣ cos θ, (10)

assuming a constant effective dipole moment magnitude, p0.
Averaging over the possible orientations of the molecule gives

⟨cw⟩ = cw0e−βμ̄ ex
w⟨e−βp0 ∣∇ϕ̄ ∣cos θ

⟩ (11)

for the dipole concentration and

⟨P⟩ = cw0p0e−βμ̄ ex
w
∇ϕ̄
∣ ∇ϕ̄ ∣

⟨cos(θ)e−βp0 ∣∇ϕ̄ ∣cos θ
⟩ (12)

for the polarization vector, where ⟨⟩ denotes the average over θ.
Averaging over the dipole orientations gives

⟨e−βp0 ∣∇ϕ̄ ∣cos θ
⟩ =

1
2∫

π

0
e−βp0 ∣∇ϕ̄ ∣cos θ sin θdθ

=
sinh(βp0 ∣ ∇ϕ̄ ∣)

βp0 ∣ ∇ϕ̄ ∣
(13)

and

⟨cos(θ)e−βp0 ∣∇ϕ̄ ∣cos θ
⟩ =

1
2∫

π

0
e−βp0 ∣∇ϕ̄ ∣cos θ cos θ sin θdθ

= −
sinh(βp0 ∣ ∇ϕ̄ ∣)

βp0 ∣ ∇ϕ̄ ∣
L(βp0 ∣ ∇ϕ̄ ∣), (14)

where L(x) = coth(x) − 1/x is the Langevin function. Therefore, the
dipole concentration can be written as

⟨cw⟩ = cw0e−βμ̄ ex
w

sinh(βp0 ∣ ∇ϕ̄ ∣)
βp0 ∣ ∇ϕ̄ ∣

, (15)

and the polarization density can be expressed as

⟨P⟩ = −p0⟨cw⟩
∇ϕ̄
∣ ∇ϕ̄ ∣

L(βp0 ∣ ∇ϕ̄ ∣). (16)

In turn, the weighted polarization vector is defined as

⟨P̄⟩ = −ws ∗ [p0⟨cw⟩
∇ϕ̄
∣ ∇ϕ̄ ∣

L(βp0 ∣ ∇ϕ̄ ∣)]. (17)

Moving forward, we drop the bracket notation such that P refers to
⟨P⟩, P̄ refers to ⟨P̄⟩, and cw refers to ⟨cw⟩.

Along with the description of the polarization vector, we must
also describe the ionic charge when there is a non-zero electrolyte
concentration. The ionic electrochemical potential is defined as

βμi = ln(
ci

ci0
) + zieβϕ̄ + βμ̄ex

i . (18)

Therefore, the distributions of the ions are given by

ci = ci0 exp(−βeϕ̄ − βμ̄ex
i ). (19)

For a 1:1 solution of concentration c0, the electrolyte charge density
is, therefore, given as follows:

ρe = −2ec0 sinh(βeϕ̄)e−βμ̄ ex
i , (20)

and the weighted electrolyte charge density is ρ̄e = ws ∗ ρe.
The Poisson equation consistent with the free energy density in

Eq. (6) is

−ϵ0∇
2ϕ = −∇ ⋅ P̄ + ρ̄e, (21)

as shown in Appendix A. The overall charge density in the Poisson
equation includes both the weighted bound charge density on the
dipolar molecules, ρ̄b = −∇ ⋅ P̄, and the weighted ionic charge, ρ̄e.

C. Reducing to one dimension
In the 1D geometry between two flat plates, the weighting

function formulas can be modified69 to integrate over the y and
z dimensions since all variables depend only on x. Physically, the
spherical shell of charge corresponding to ws becomes equivalent
to a line of charge with length 2R and uniform charge per length
(the differential area of a sphere per differential in the axial coor-
dinate). The spherical Heaviside weighting function, wv , becomes
a quadratic function, corresponding to the differential volume of a
sphere per differential in the axial coordinate. Their modified forms
are as follows:

wv(x − x′) =
π(R2

− (x − x′)2
)

v
Θ(R− ∣ x − x′ ∣), (22)

ws(x − x′) =
1

2R
Θ(R− ∣ x − x′ ∣). (23)

In 1D, the integro-differential equation for the electrostatic
potential is

0 = ϵ0
d2ϕ
dx2 −

dP̄
dx
+ ρ̄e, (24)

where

P = −p0cw0e−βμ̄ ex
w

sinh(βp0ϕ̄ ′)
βp0ϕ̄ ′

L(βp0ϕ̄ ′), (25)

and ϕ̄ ′ = dϕ̄/dx denotes a derivative with respect to x. In this geom-
etry, the average orientation of the dipoles relative to the x axis can
be expressed as

⟨cos(θ)⟩ = −L(βp0ϕ̄ ′). (26)

We assume that the surface charge is uniformly distributed on
bounding flat hard walls at x = 0 and x = L. For simplicity, here, the
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surface charge density is assumed not to have any finite size, so the
boundary conditions reduce to

(−ϵ0ϕ′)∣
x=0
= qs,

(−ϵ0ϕ′)∣
x=L
= ±qs,

(27)

where we have the surface charge density of magnitude qs on each
side. Depending on the scenario under investigation, the charge on
each surface is either opposite in sign or the same in sign, as sketched
in Fig. 1. If the charge at x = L is negative, we choose “+” in the sec-
ond line of Eq. (27), and the opposite is true if the charge is positive.
The local dipolar and ionic concentrations are zero in the regions
x < R and x > L − R owing to the hard sphere repulsion from the
flat bounding surfaces. To solve these equations, we discretized them
using finite difference formulas.

D. Extracting the effective local dielectric tensor
A fundamental calculation involves extracting the static dielec-

tric tensor profile from the predicted polarization vector. Here, we
choose a permittivity definition that is consistent with the weighted
Poisson equation. First, we directly define the normal component
based on the solution to the 1D equations we posed. We then seek
a perturbative estimate of the tangential component from the 1D
solution.

1. Normal component
The self-consistent definition of the normal permittivity is

given by

ϵ� = 1 −
P̄

ϵ0ϕ′
, (28)

which represents the total displacement vector, D = −ϵ0ϕ′ + P̄,
divided by the electric field, both extracted directly from our model.
Note that while the electrochemical potential of the dipoles depends
on the weighted electrostatic field, the displacement vector includes
a contribution from the local electric field (−ϕ′) and also the
weighted polarization vector (P̄). The modified Poisson equation
can be written in terms of the effective normal permittivity in the
following form:

d
dx
(ϵ0ϵ�

dϕ
dx
) = −ρ̄e. (29)

Here, the effective normal permittivity includes only the polariza-
tion of the solvent and does not include the polarization from the
ions. We will return to the nuances of the definition of the normal
permittivity in the analysis of concentrated electrolytes.

2. Tangential component
While we assume no tangential component of the field in the

solution of our model, we can also use the model to quantify the
extent of tangential polarizability of the interfacial polar liquid in
response to macroscopic electric fields tangential to the plane of the
interface. If the tangential electric field is constant and weak rela-
tive to the normal electric field, then we can extract it as a small,
constant perturbation upon the normal field. For example, we can
assume a small perturbative component of the electric field in the
y direction, Ey, which satisfies ∣Ey ∣≪∣Ex ∣. We can approximate the

magnitude of the gradient of the weighted electrostatic potential
as ∣ ∇ϕ̄ ∣≈∣Ēx ∣=∣ϕ̄ ′ ∣, where the prime notation still refers to deriva-
tives in the x-direction and Ēx is the weighted electric field in the
x-direction. If we apply such an assumption to the y-component of
Eq. (17), the displacement vector in the y-direction is, therefore, as
follows:

Dy = ϵ0Ey + P̄y ≈ ϵ0Ey +ws ∗ [p0cw
Ēy

∣ Ēx ∣
L(βp0 ∣ Ēx ∣)]

≈ ϵ0Ey +ws ∗ [p0cw
Ēy

ϕ̄ ′
L(βp0ϕ̄ ′)]. (30)

Next, we divide the tangential (y) component of the displace-
ment vector by the tangential electric field (Ey). Since we assume
that the tangential electric field is constant due to the system’s
translational invariance in the yz-plane, it can be treated as a
constant for the differentiation or convolution operations so that
Ey ≈ Ēy. Through this process, the tangential permittivity, ϵ∥, can be
defined as

ϵ∥ ≈ 1 −ws ∗(
P

ϵ0ϕ̄ ′
). (31)

III. RESULTS
The equations are solved between two surfaces with fixed

charge densities of magnitude qs and separation distance L. The
baseline parameters correspond to the effective values for water:
dipolar molecule concentration cw0 = 55M (corresponding to ≈33
molecules per nm3), temperature T = 300 K, and a diameter of
d = 0.285 nm. While ϵr is the bulk dielectric constant far from the
interface, the local static dielectric tensor can vary as a function of
position. In the bulk, the relative permittivity as given by the dipolar
model for small perturbations is given by20

ϵr = 1 +
βcw0p2

0

3ϵ0
. (32)

For a dipolar concentration of cw0 = 55M at T = 300 K, the bulk
dielectric constant of ϵr = 80 requires an effective dipole moment
of p0 = 4.86 D. This effective value is significantly larger than the
actual molecular dipole moment in the liquid water phase, 2.95
± 0.2 D.70 The effective dipole moment, p0, accounts for corre-
lations between the orientation of a single dipolar molecule and
the orientation of its nearest neighbors, as accounted for in more
sophisticated bulk dielectric theories.39,71–73 In those theories, a
Kirkwood G-factor rescales the effective dipole moment to capture
the dipole–dipole correlations, as studied extensively in previous
studies of bulk74 and confined water.57 Once an effective dipole
moment is chosen in our theory, the relevant quantities that deter-
mine the charge ordering at the interface are mean-field or no local
convolutions of mean-field variables so that the dipole–dipole cor-
relations are not double counted. Therefore, we lump these effects
into the effective dipole moment in our model, similar to previous
dipolar Poisson–Boltzmann approaches.20,42 The default separation
distance between the two charged surfaces is L = 5 nm, and the
default surface charge density magnitude is qs = 0.01 C/m2.
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With the inclusion of the polar fluid, the parameter space
for the system under investigation is large. We, therefore, divide
our results into five parts: (A) First, we present results for pure
polar fluids between two opposite surfaces. We formally investi-
gate how the interfacial electrostatic properties change with varying
bulk dielectric constant and also how nonlinear saturation of the
dipole orientation arises at high surface charge. We also show the
complicated layering of the molecular orientation for dipolar flu-
ids confined to the sub-nanometer scale. (B) Second, the interfacial
electrostatic properties are investigated with a non-zero ionic con-
centration between oppositely charged surfaces. Here, the results are
presented for varying ionic concentrations and for varying surface
charge magnitudes. (C) Next, the theory is applied to understanding
hydration interactions between two surfaces of (i) opposite charge
with and without ions present and (ii) the same charge with a non-
zero ionic concentration. (D) The double layer capacitance with ions
present is, then, investigated, ensuring non-overlapping double lay-
ers with large separation distances between the surfaces. (E) Finally,
the equations are linearized and cast into a differential form, which
gives analytical expressions for decay lengths describing the layering
of charge and mass at the interface.

A. Pure polar fluids: Interfacial dielectric structure
The system of a pure polar fluid is rare, in practice, but it is

a useful reference system to show the dipolar shell theory predic-
tions. In order to maintain electroneutrality, the bounding surfaces
must have equal but opposite charge density since the pure polar
fluid does not have any net charge. Within this system, we will high-
light the influence of the fluid bulk permittivity, ϵr , the strength of
the electric field in the system that is set by the surface charge den-
sity on the boundaries, qs, and the confinement extent of the fluid
given by the surface separation distance, L.

To start, we investigate the effect of the effective dipole
moment, p0, on the resulting potential and electric field distribution.
Since p0, of course, determines the bulk macroscopic dielectric con-
stant, ϵr , we may say that we will trace the effect of the latter on the
local properties near the interface, although the variation ϵr is itself
the result of variation of p0. In order to study fluids of different bulk
dielectric constants, we vary p0 to take on the values p0 = 2.36 D
for ϵr = 20 and p0 = 1.09 D for ϵr = 5, keeping all other variable
constant.

In Fig. 2, the electrostatic potential, electric field, and polariza-
tion density are plotted along with their weighted counterparts for
fluids of varying bulk permittivity, ϵr . For each fluid, the electrostatic
potential, ϕ, oscillates near the surface, within the first nanometer.
The potential difference across the nanoslit is greatest for the least
polar fluid with ϵr = 5 since the dielectric screening is the weak-
est for this system. The oscillations in the potential lead to sharp
cusps and oscillations in the electric field, E, for all three studied
fluids. The electric field even reverses signs at some points, corre-
sponding to overscreening of the surface charge. The oscillations and
sign reversals in the electric field are stronger for the more polar
fluids with higher ϵr . The local polarization density, P, has related
signatures, where the local polarization density magnitude exceeds
the imposed displacement field magnitude set by the surface charge
density on the bounding walls. For the weighted variables, ϕ̄, Ē, and
P̄, the weighting operation smoothens out the oscillations compared
to the local variables, but does not eliminate them.

The weighted electrostatic potential, ϕ̄, and weighted electric
field, Ē, determine the local electrostatic energy and orientation of
the dipolar shells in the theory. The weighted polarization den-
sity, P̄, contributes to the overall displacement field, D = ϵ0E + P̄.
Therefore, the overscreening of the surface charge occurs when
P̄ exceeds qs, where the cumulative bound dipolar shell charge
exceeds the surface charge density. All three studied the fluids
experience at least one overscreening peak in the weighted polar-
ization profile. However, the oscillations decay more rapidly and
the overscreening peaks are smaller for the lower bulk permittivity
liquids. From these profiles, we can deduce that the overscreen-
ing is essential to describing the structuring of polar liquids with
large bulk dielectric constant and is sensitive to the effective dipole
moment, p0.

Next, we can use the electrostatic variables to determine the
components of the dielectric tensor near the interface, as shown in
Fig. 3, for fluids with different bulk dielectric constants. Due to the
weighted polarization density overscreening of the surface charge
density, the normal component of the dielectric tensor has singulari-
ties. The tangential component, on the other hand, does not have the
same overscreening structure since it is set by a long range tangential
electric field, and the tangential component of the dielectric function
varies closely with the local dipole concentration, cw . The orienta-
tion of the dipoles, ⟨cos(θ)⟩, is actually higher for the fluid that is
the least polar. This fact appears because the least polar fluid with
ϵr = 5 corresponds to the weakest dielectric screening of the elec-
tric field. Even though large differences are observed in the dielectric
profiles, at the low charge density of qs = 0.01 C/m2, the dipole con-
centration is not very strongly affected by electrostatics, as shown
in Fig. 3(d). Instead, the dipole density is dominated by the pack-
ing effects embedded in μ̄ex

i , which is independent of electrostatics at
small potentials.

The large contact value for the density is also governed by the
nonlocal packing effects, similar to uncharged hard-sphere fluids. In
turn, the excess chemical potential owing to packing plays a minor
role in the overscreening structure in the normal component of
the dielectric tensor. The overscreening signatures can, therefore,
be attributed to the delocalization of the bound charge on dipoles
over the dipole molecule surface. The remarkable anisotropic static
dielectric tensor predicted by the dipolar shell theory here is simi-
lar to the reported molecular dynamics simulations of the dielectric
properties of interfacial water.18,35,38,57,58 The overscreening signa-
tures also qualitatively match the results from simulations and a
phenomenological electrostatic theory of confined liquids.75

Furthermore, we explore what happens when a pure polar
fluid with bulk dielectric constant ϵr = 80 is subjected to a strong
electric field at the boundaries, driving the system to nonlin-
ear response with experimentally feasible surface charge densities.
Figure 4 includes the normal dielectric permittivity, the tangen-
tial permittivity, the dipole orientation, and the dipole density as
a function of distance from the left surface for different values of
surface charge density. The overscreening structure and singulari-
ties in the normal dielectric constant are more or less unchanged as
the surface charge increases. However, at the largest charge density,
qs = 0.25 C/m2, the normal and tangential components of the per-
mittivity saturate to a lower value. Even though the strong electric
field leads to dielectric saturation and electrostriction (an increase
in the local dipolar concentration near the interface), the saturation
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FIG. 2. Electrostatic screening by pure polar liquids between two surfaces of opposite charge shown for different values of the bulk dielectric constant, comparing the
weighted and nonweighted quantities. The curves are generated by solving Eq. (24) with ρ̄e = 0. Variables are plotted as functions of the normal coordinate, x, zooming into
the profiles emerging from the left interface for (b), (c), (e), and (f). The selected bulk dielectric permittivities correspond to the values of p0 = 4.86 D for ϵr = 80, p0 = 2.38 D
for ϵr = 20, and p0 = 1.09 D for ϵr = 5, keeping all other parameters constant (T = 300 K, L = 5 nm, cw0 = 55M, d = 0.285 nm, and qs = 0.01 C/m2). (a) Electrostatic
potential, ϕ, (b) electric field, E = −ϕ′, (c) polarization density, P, (d) weighted electrostatic potential, ϕ̄, (e) weighted electric field, Ē = −ϕ̄ ′, and (f) weighted polarization
density, P̄. The local variables in (a)–(c) describe the “measured” local electrostatic response of the system, while the weighted potential and weighted electric field in (d)
and (e) determine the electrochemical potential and orientation of dipoles. The weighted polarization vector in (f) corresponds to the polarization arising from the delocalized
bound charge on the dipolar shells.

of the orientation of the dipoles due to the strong field intensity
leads to a lower effective dielectric constant for the polar fluid in
the nanoslit. Interestingly, the dipolar concentration profile at high
charge density forms layers with sharp cusp-like peaks near the
surface.

Finally, the behavior of the polar liquid model is studied
as a function of the extent of confinement, as shown in Fig. 5.
Here, the distance between the two surfaces, L, is varied between
L = 0.36 nm to L = 1.08 nm. The layering in the orientation of
dipole molecules relative to the normal axis, ⟨cos(θ)⟩, is compli-
cated by the coherency of the layers of charge emanating from each
surface. In the orientation profiles, we see that the spacing and num-
ber of peaks changes non-monotonically as the separation distance
increases. This means that single angstrom differences in separation
can lead to constructive or destructive interference from opposing
layers of dipoles, forming dipolar patterns with varying orientations,
periodicity, and number of layers.

B. What changes in the presence
of a strong electrolyte

Commonly, dissolved ions are present in polar fluids due to the
dissociation of electrolytes. In this section, we examine the screening
of charge at interfaces for a polar fluid with nonzero ion concen-
tration. Due to the nonzero ion concentration, the surface charges
need not be equal nor do they need to be opposite since, as directly
specified by the boundary conditions, any net charge of the two sur-
faces will be screened by ionic charges in the nanoslit. In nanoslits
of finite lateral size in the y and z dimensions, screening charges
may also exist outside the nanoslit, but this effect is not captured
in our 1D model. For the purposes of this section, however, to stay
in line with the pure polar fluid case, we maintain equal but opposite
surface charge densities on the bounding walls of the nanoslit.

In Fig. 6, we highlight the main electrostatic properties for a
1:1 electrolyte of varying ionic concentration, c0. Examining the
potential, ϕ, in Fig. 6(a), the overscreening oscillations seem to
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FIG. 3. Dielectric tensor, average orientation, and density of pure polar fluids between two surfaces of opposite charge, generated for model polar liquids with different values
of the bulk dielectric constant. The curves are generated by solving Eq. (24) with ρ̄e = 0. Variables are plotted as functions of the normal coordinate, x, zooming into the
profiles emerging from the left interface. The results are plotted for three pure polar fluids, corresponding to p0 = 4.86 D for ϵr = 80, p0 = 2.38 D for ϵr = 20, and p0 = 1.09
D for ϵr = 5, keeping all other parameters constant (T = 300 K, L = 5 nm, cw0 = 55M, d = 0.285 nm, and qs = 0.01 C/m2). (a) Normal component of the effective dielectric
tensor, ϵ�, plotted in terms of its inverse. (b) Tangential component of the effective dielectric tensor, ϵ∥. (c) Average orientation of dipolar molecules, ⟨cos(θ)⟩. (d) Density
profile of dipolar molecules, cw , normalized by the bulk value. In (d), the density profiles are closely overlapping each other due to the low applied surface charge.

only weakly depend on the ionic concentration. The difference in
the local concentrations of anions and cations, c− − c+, includes
oscillatory structures for all concentrations owing to the dielectric
overscreening. Furthermore, at the highest concentration, the ions
themselves also contribute to overscreening, where the local ionic
charge density oscillates between negative and positive values. While

the ionic concentration has a weak influence on the tangential dielec-
tric permittivity, it strongly influences the normal component of
the effective solvent dielectric permittivity. The nonzero ionic con-
centrations lead to longer range oscillations and more singularities
in the normal component of the effective dielectric permittivity
of the solvent, ϵ�. For the highest concentration, the apparent

FIG. 4. Dielectric tensor, average orientation, and density of pure polar fluids between two surfaces of opposite charge for varying surface charge density. The curves are
generated by solving Eq. (24) with ρ̄e = 0. Variables are plotted as functions of the normal coordinate, x, zooming into the profiles emerging from the left interface. The
results are plotted for varying surface charge density (qs = 0.01 C/m2, qs = 0.1 C/m2, and qs = 0.25 C/m2), keeping all other parameters constant (T = 300 K, L = 5 nm,
cw0 = 55M, d = 0.285 nm, and p0 = 4.86 D). (a) Normal component of the dielectric tensor, ϵ�, plotted in terms of its inverse, and its direct value in the inset. (b) Tangential
component of the dielectric tensor, ϵ∥. (c) Average orientation of dipolar molecules, ⟨cos(θ)⟩. (d) Density profile of dipolar molecules, cw , normalized by the bulk value.
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FIG. 5. Orientation of molecules in a pure polar fluid between two oppositely
charged surfaces as a function of the confinement distance between the sur-
faces. The curves are generated by solving Eq. (24) with ρ̄e = 0. The results are
plotted for indicated separation distances between the two confining charged sur-
faces, L, with (a) L = 0.36 nm, (b) L = 0.48 nm, (c) L = 0.72 nm, (d) L = 0.84 nm,
(e) L = 0.96 nm, and (f) L = 1.08 nm, keeping all other parameters constant (T
= 300 K, cw0 = 55M, d = 0.285 nm, p0 = 4.86 D, and qs = 0.05 C/m2).

normal dielectric permittivity appears to enter an exotic region
0 < ϵ� < 1, which is, of course, forbidden for the general dielectric
function ϵ ∗� ,76 but not for the effective dielectric function, ϵ�. Note
that ϵ� is an effective quantity and the constraint of a forbidden
band between 0 and 176 does not apply to it. The general dielectric
function, ϵ ∗� , includes both the polarization of the dipoles and the
polarization from ions. For our geometry, it is defined by

d
dx
(ϵ0ϵ ∗�

dϕ
dx
) = 0, (33)

and is forbidden from the region 0 < ϵ ∗� < 1 by the stability require-
ment. Here, we plot both ϵ� [Fig. 6(c)] that satisfies Eq. (29) and
ϵ ∗� [Fig. 6(e)] that satisfies Eq. (33). The general dielectric function

is computed by solving Eq. (24) and then combining the dipolar
and ionic charge contributions into the ϵ ∗� function, as discussed
in Appendix B. Therefore, the weighted ionic charge density acts
as a source that allows for the effective solvent normal dielectric
tensor component ϵ� to enter the region 0 < ϵ� < 1 when ionic
overscreening occurs at high ionic concentration.

Next, the role of surface charge density on the accumulation of
ions and dipolar molecules is investigated. Figure 7 shows the anion,
cation, and dipolar molecule density rescaled to their bulk values
(c0 = 0.1M for the ions and cw0 = 55M for the dipoles) as the sur-
face charge density is varied from qs = 0.01 C/m2 to qs = 0.25 C/m2.
While the interfacial dipole concentration is increased at large elec-
tric field magnitudes, (the effect known under the name of ‘elec-
trostriction’) the counterion concentration increases much more
rapidly with increasing surface charge density, relative to the bulk
concentration. This is quite natural as electrostriction in dense polar
liquids in the electric field of the electrical double layer is a much
weaker effect than the compression of the double layer with the
increased voltage drop across it. Therefore, large surface poten-
tials preferentially accumulate counterions instead of the dipolar
molecules. However, when the voltage drop is large, overcrowding
of counterions can occur, where layers rich in counterions of the
same sign form near each of the two surfaces, pushing out the dipolar
molecules further from the surface. Clearly, this conclusion depends
on the size of ions and of dipoles. In the case studied here, they are
of the same size. However, had this been different, for example, for a
situation where the dipoles are much smaller than the ions, then the
dipoles will be drawn into the double layer to screen the repulsions
between the counterions.

C. Hydration forces
The layering of charged dipolar molecules confined between

two interfaces causes an oscillatory hydration interaction. The
hydration interaction is critical in colloidal stability, including
describing forces experienced by charged biological proteins, lipid
bilayers, or DNA at the nanometer scale. Here, we show that the
dipolar shell theory can capture the oscillatory hydration forces
commonly observed in the measurements of the forces between
smooth surfaces separated by liquid films.

To calculate the disjoining pressure, we can solve the system of
equations based on the electrostatic energy in Eq. (6) that is consis-
tent with the modified Poisson equation in Eq. (24) for varied surface
separation distances. The disjoining pressure calculation involves
computing the overall grand potential for a given separation dis-
tance and then computing the difference in grand potential as the
separation distance changes. For simpler computations, we can use
the general expression for the electrostatic free energy

F el
[ϕ] = ∫ dr{

ϵ0

2
(∇ϕ)2

}, (34)

and the forms of F id and F ex in Eqs. (2) and (4) to compute the
overall free energy as a function of the separation distance between
two surfaces. Using the above general form of the electrostatic free
energy density allows us to do the free energy calculation without
specific consideration of surface terms. In the calculation, we assume
free exchange with a bulk reservoir at fixed concentration, the grand
canonical ensemble. The grand potential can be written as
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FIG. 6. Electrolyte screening behavior between two surfaces of opposite charge for varying ionic concentration. The curves are generated by solving Eq. (24) with ρ̄e ≠ 0.
The ionic concentration is varied between c0 = 0M, c0 = 0.1M, c0 = 0.5M, and c0 = 2.5M, keeping all other parameters constant (T = 300 K, L = 5 nm, cw0 = 55M,
d = 0.285 nm, qs = 0.01 C/m2, and p0 = 4.86 D). (a) Electrostatic potential, ϕ. (b) Local difference in ionic concentration, proportional to the local charge density. (c) Normal
component of the effective dielectric tensor (accounting only for the polarization of solvent), ϵ�, plotted in terms of its inverse. (d) Tangential component of the effective
dielectric tensor, ϵ∥. (e) Normal component of the general dielectric tensor, ϵ ∗� (accounting for the polarization of the solvent and ions).

Ω = F −∑
i
∫ dr{μibci}, (35)

where μib = δF/δci∣b. The disjoining pressure can be calculated using
the relation

Pd = −
d(Ω/A)

dL
(36)

at constant temperature and reference chemical potential, where A
is the area of the surfaces.77–80 Here, we numerically compute the
integrals that define Ω/A at various values of L and numerically take
the derivative to arrive at the pressure. Pressures are reported relative
to the bulk reference value as L→∞, P∞.

In Fig. 8, the disjoining pressure is plotted for (a) a pure polar
fluid between two surfaces of opposite charge, (b) a 0.1M 1:1 elec-
trolyte between two surfaces of opposite charge, and (c) a 0.1M
1:1 electrolyte between two surfaces of the same charge. First, we
will discuss case (a) of the pure polar fluid. At zero surface charge
density, the interactions are dominated by the packing effects cap-
tured in μ̄ex

i . At larger charge density, such as qs = 0.30 C/m2, the
electrostatic contribution to the disjoining pressure dominates the
interaction. While the initial few layers of the profile are jagged, the
pressure profile gives way to regularly shaped decaying oscillations
at larger separation distances. For case (b), adding in an electrolyte
at low concentration (c0 = 0.1M) relative to the dipole concentration
(cw0 = 55M) does not significantly change the observed patterns in
the short range hydration interaction at low or high surface charge

FIG. 7. Electrolyte screening behavior between two surfaces of opposite charge for varying surface charge density. The curves are generated by solving Eq. (24) with
ρ̄e ≠ 0. The surface charge density is varied between (a) qs = 0.01 C/m2, (b) qs = 0.1 C/m2, and (c) qs = 0.25 C/m2, keeping all other parameters constant (T = 300 K,
L = 5 nm, cw0 = 55M, d = 0.285 nm, c0 = 0.1M, and p0 = 4.86 D). The cation (red), anion (blue), and dipolar molecule (black) profiles are plotted, normalized to their
respective bulk values.

J. Chem. Phys. 156, 244705 (2022); doi: 10.1063/5.0096439 156, 244705-10

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. The disjoining pressure between two surfaces of varying separation dis-
tance plotted for different ionic concentrations and polarity of surface charges.
Individual curves correspond to the indicated surface charge density, held con-
stant for all separation distances. The ionic concentration, c0, and the polarity of
the surfaces are listed above each plot, indicating (a) zero ion concentration and
opposite charge, (b) c0 = 0.1M and opposite charge, and (c) c0 = 0.1M and same
charge. The three lines in each plot correspond to the values of the surface charge
density from qs = 0, 0.05, and 0.30 C/m2.

density. However, if as shown in case (c), the charge on the two sur-
faces is of the same sign, then the oscillation pattern is shifted and
the sharpness in the patterns is flipped. Even so, the general pattern
for interactions between surfaces of the same charge and of opposite
charge is relatively similar in their overall envelope and long-range
decay. Such an angled pressure profile dependent on the surface
charge polarity, while not immediately discernible in surface force
apparatus (SFA) measurements in the literature, could be detected
with a carefully designed experiment if it is, in fact, present. Further-
more, measurements with soft surfaces or surfaces that are rough
might blur these predicted features.

D. Model applied to double layer capacitance
In electrochemistry, one of the important measurable interfa-

cial quantities is the double layer capacitance. In traditional theo-
retical approaches, the capacitance is composed of a constant Stern
capacitance, Cs, and a Gouy–Chapman diffuse layer capacitance CD
in series. The Stern capacitance is assumed to arise due to the layer
of water hydrating the interface with depressed dielectric constant
and fixed thickness. The diffuse layer capacitance accounts for the
screening of the surface charge by the ionic charge distribution in
the solution near the interface. The total differential capacitance of
an electrode, CT , is defined as

CT = ∣
dqs

dϕs
∣, (37)

where ϕs is the surface potential. The total differential capacitance is,
therefore, related to the Stern and Debye capacitance,

CT = (C
−1
D + C−1

s )
−1

. (38)

At small potential drops across the double layer for dilute solutions,
the diffuse layer capacitance is approximately equal to the Debye
capacitance,

CD =
ϵrϵ0

λD
, (39)

where λD is the Debye length,

λD =

√
ϵrϵ0kBT

2e2c0
. (40)

In the dipolar shell theory, the equally sized hard sphere assump-
tion means that there is no layer of water near the surface. In the
model, the water layering and ionic screening occur in a diffuse man-
ner from the interface. Despite the overlap, the layering of water still
leads to an effective Stern capacitance.15

In Fig. 9, we calculate the variation in the total double layer
capacitance, effective Stern capacitance, and calculated Debye capac-
itance as the ionic concentration changes, all calculated near the
point of zero charge for non-overlapping double layers. While the
theory does not contain a specific layer of water at an interface like
the traditional Stern layer concept, it returns a nearly constant effec-
tive Stern capacitance around 60 μF/cm2. The general predictions of
semi-phenomenological nonlocal electrostatic theory in Refs. 15–17
are fully supported by this “molecular” level model. The details of
the capacitance could be affected strongly by the size asymmetry of
real polar liquids and ions. In other words, small water molecules
would access the surface more easily than larger ions in the solution
in order to reduce the electrostatic repulsion between the counteri-
ons. Furthermore, the induced polarization of the solvent and ions
can strongly affect the capacitance.81

E. Linearized form of equations
The system of equations outlined above are generally nonlin-

ear integro-differential equations. While they can be solved in a
straightforward manner numerically, they do not admit simple ana-
lytical solutions. Here, we show how the system of equations can be
reduced to linear differential forms, where the oscillatory decay can
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FIG. 9. Effective capacitance at zero charge for an electrolyte as a function of
ionic concentration. All other parameters are kept constant (T = 300 K, L = 5 nm,
cw0 = 55M, d = 0.285 nm, and p0 = 4.86 D). The total capacitance is calculated
numerically from an isolated double layer. The Debye capacitance is calculated as
CD = ϵr ϵ0/λD, and the effective Stern capacitance is calculated assuming a series
capacitance model to match the total capacitance from the dipolar shell theory.

be described analytically. While not valid for the first few layers of
oscillations in charge and mass, the linearized forms of the theory
are decent approximations for the long-range behavior of the polar
fluid.

The linearized weighted Langevin–Poisson equation for the
dipolar shell theory [combining linearized forms of Eqs. (17), (20)
and (21)] is

[1 + (ϵr − 1)ŵ2
s ]∇

2ϕ = ϵrκ2
Dŵ

2
s ϕ, (41)

where κD is the inverse Debye length and ϕ is written in its local
form. For small perturbations, we can assume that the convolu-
tion with ws acts as a differential operator, ŵs ≈ 1 + ℓ2

s∇
2, where

ℓs = d/
√

24.59 The ˆ symbol corresponds to the differential form of
the weighting function. In 1D, if we assume ϕ = A exp(κx), we get
the following characteristic equation for the decaying modes:

κ2
+ (1 + κ2ℓ2

s )
2
[(ϵr − 1)κ2

− ϵrκ2
D] = 0. (42)

If there is no electrolyte present, κD = 0, then the solution for κ has a
real and imaginary parts as

Re(κ) = 0, ±
1
ℓs

¿
Á
ÁÀ−

1
2
+

1
2

√
ϵr

ϵr − 1
,

Im(κ) = 0, ±
1
ℓs

¿
Á
ÁÀ1

2
+

1
2

√
ϵr

ϵr − 1
.

(43)

The zero solutions correspond to a linear potential profile, while
the superimposed nonzero solutions correspond to the structuring
of the liquid at the interface. The real part describes the exponen-
tial decay of oscillations, with the sign chosen to give eventual decay

into the bulk. The imaginary part gives information on the period of
oscillations. In the limit of large (ϵr − 1), we get

Re(κ) = 0, ±
1

2ℓs
√

ϵr − 1
,

Im(κ) = 0, ±
1
ℓs

.
(44)

This means that in the absence of ions, the effective hydration
length governing decay of the oscillations scales as

λs = d
√
(ϵr − 1)/6, (45)

and an oscillation wavelength of about one molecular diameter. For
water, the effective hydration length turns out to be ≈1 nm at room
temperature. The hydration length describes the decay of the alter-
nating layers of bound charge emanating from a surface, and the
magnitude of this decaying mode is determined by the magnitude
of polarization at the surface.

Now, if we include salt, the expressions for the decaying modes
become more complicated. In the limit of small but non-zero ion
concentrations, κD → 0 gives a longest decaying mode of κ = κD,
where the effective decay length is the Debye length, λD. In this limit,
the hydration length can be thought to be independent of and addi-
tive to the long range Debye screening, as is commonly assumed in
experimental measurements of surface forces.43

In the limit of large ionic concentrations and large (ϵr − 1),
another simplified formula can be attained for the slowest decaying
mode,

κ ≈
1

2
√

ϵrκDℓ2
s
±

i
ℓs

. (46)

This formula is valid when
√

ϵrκDℓs ≫ 1, meaning that the molecule
size is much larger than the Debye length in vacuum. The effective
screening length becomes independent of the relative permittivity,

λs ≈
2ℓ2

s
√

ϵr

λD
=

d2√ϵr

12λD
, (47)

since the dependence of ϵr cancels out [c.f. Eq. (40)], and the
oscillations are on the order of one molecular diameter.

An additional source of oscillations is from the density varia-
tions owing to packing of molecules at a flat interface. Taking each
set of species, we can assume small perturbations,

cw ≈ cw0(1 − βμ̄ ex
),

ci ≈ ci0(1 − zieβϕ̄ − βμ̄ ex
).

(48)

If we sum over all species assuming the same size of each molecule
and, thus, identical excess chemical potential, we get an expression
for the local filling fraction,

η − η0 = −η0βμ̄ ex
= −

2η0(4 − η0)

(η0 − 1)4 ŵ2
v(η − η0), (49)

where we have linearized the excess chemical potential. We can
again assume small perturbations and treat wv as an operator,
ŵv ≈ 1 + ℓ2

v∇
2, where ℓv = d/

√
40. The decay of the density for
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a symmetric fluid is independent of the decay of the electro-
static potential, and the characteristic equation, assuming η − η0
= A exp(−κmx), is given by

1 +
2η0(4 − η0)

(η0 − 1)4 (1 + ℓ
2
vκ2

m)
2
= 0. (50)

Here, κm has real and imaginary parts,

Re(κm) =
1
ℓv

¿
Á
Á
ÁÀ−

1
2
+

1
2

¿
Á
ÁÀ1 +

(1 − η0)4

2η0(4 − η0)
,

Im(κm) =
1
ℓv

¿
Á
Á
ÁÀ

1
2
+

1
2

¿
Á
ÁÀ1 +

(1 − η0)4

2η0(4 − η0)
.

(51)

As η0 → 0, the oscillations decay rapidly over a small length
scale λm = ℓv(8η0)

1/4. For dense solutions, as η0 → 1, the real and
imaginary parts of the solution result in

Re(κm) =
(1 − η0)

2

√
8ℓv
√

η0(4 − η0)
,

Im(κm) =
1
ℓv

.

(52)

In other words, the decay of mass oscillations with the wavelength of
the molecular diameter goes as

λm ≈

√
1
5

d
√

η0(4 − η0)

(1 − η0)2 . (53)

For water at room temperature, the decay length for mass oscilla-
tions is λm ≈ 0.4 nm. Therefore, the mass density oscillations decay
more rapidly (over a shorter length scale) than the oscillations in
the potential. While the typical filling fraction for pure liquids is
around η0 ≈ 0.4, an increase in the filling fraction corresponds to
longer range oscillations in the liquid number density. As η0→ 1, the
predicted decay length tends to infinity, corresponding to a crystal.
At extremely high filling fractions, the Carnahan-Starling equation
of state may not be appropriate near the jamming limit. Regardless,
the usual bulk filling fraction of typical liquids is much smaller than
one. The competition between mass and hydration length depends
on the filling fraction of the fluid and the relative dielectric constant
of the fluid, as well as the magnitude of the surface charge density or
surface potential. Even so, the oscillation wavelength for electrostat-
ics and density variations remains comparable to the molecular or
ionic diameter for each decay mode.

Thus, for highly charged surfaces, we expect to see oscilla-
tion patterns with the period of oscillations of the liquid molecule
size and decay envelope of the order of 1 nm determined by
the hydration length in Eq. (45), whereas for low charged or
uncharged surfaces, the envelope will be much shorter based on
Eq. (53). In experiments, people saw a variance of decay length
of the force between neutral surfaces,82 but this was explained
by lateral inhomogeneity of the generally electroneutral charge
distribution along the surface.83 The oscillations themselves get
smeared by the smearing of the surfaces. Our model suggests that
the interplay of charge ordering and packing effects will influ-
ence the observed decaying modes, as was demonstrated clearly by

studying the hydration forces in Fig. 8 with varying surface charge
magnitudes.

IV. CONCLUSIONS
The dipolar shell theory describes layering in charge and mass

for an interfacial polar fluid. In this work, we have demonstrated
that the effective delocalized bound charge on the dipolar molecules
underlies the overscreening phenomenon, with alternating layers of
bound charge density on the dipoles.

The overscreening effect leads to significant anisotropy in the
normal and tangential components of the permittivity. The normal
component has singularities owing to the overscreening effect, while
the tangential component scales more closely with the dipole con-
centration. The length scale governing the decay of oscillations from
the interface is the hydration length, λs = d

√
(ϵr − 1)/6.

When ions are present, the ionic layering is influenced by
the structuring of the polar fluid, and the ions also begin to con-
tribute to the overscreening effect when they reach a sufficiently high
concentration.

The theory could be extended further and applied to vari-
ous other applications not mentioned in this work. Straightforward
extensions of the theory could describe the following: (i) varying
electrolyte composition with multivalent ions and mixtures of polar
fluids, (ii) varying the geometry of the pore domain to cylindrical or
spherical pores or using the theory to describe the double layer struc-
ture around cylindrical or spherical charged colloids, (iii) extending
the analysis to non-uniform ion and water sizes, (iv) demonstrating
the charging dynamics of the dipolar fluid orientation and layer-
ing, (v) showing the role of double layer and hydration oscillation
overlap on the system capacitance, (vi) demonstrating the role of the
dipolar fluid organization on the effective ζ-potential for electroki-
netic measurements, and (vii) including the interfacial polar liquid
structure in a formulation of interfacial electrochemical reactions.

Although the theory does capture the charge structuring at the
interface, it still falls short of perfectly describing real polar liq-
uids. For example, the theory does not reproduce the single-ion-level
hydration. A more sophisticated approach may be necessary to keep
track of the bound and free states of water that constitute the coor-
dinated hydration shell of individual ions. Furthermore, the theory
only indirectly captures the correlations between neighboring dipo-
lar molecules, which requires an effective dipole moment that is
larger than the true value for highly polar fluids.

The dipolar shell structure assumed in the theory is significantly
simpler than typical charge distributions within polar molecules. For
example, the higher-order multipole moments of water can strongly
influence the interfacial polarization.35,84,85 The model assumes a
hard sphere repulsion, but real polar fluids will have softer repul-
sive interactions, as well as attractive dispersion interactions. Finally,
we have neglected electronic degrees of freedom, always present in
polar fluids, which contribute to the dielectric constant of the liquid
independent of the fixed dipole orientations.

Despite the simplifications, the dipolar shell theory presents a
powerful theoretical framework to investigate the interfacial proper-
ties of polar liquids. The system of integro-differential equations is
readily soluble, especially in 1D geometries. The approximate, differ-
ential form of the theory gives analytical formulas for quick estimates
and experimental comparisons.
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APPENDIX A: DERIVATION OF ELECTROSTATIC
FREE ENERGY

Here, we reduce the electrostatic free energy to the form
presented in the main text. The free energy can be defined as

F el
[ϕ] = ∫ dr{

ϵ0

2
(∇ϕ)2

}. (A1)

The modified form of Poisson’s equation can be written as

0 = ϵ0∇
2ϕ + ρ̄b + ρ̄e (A2)

in terms of the weighted bound charge density or as

0 = ϵ0∇
2ϕ −∇ ⋅ P̄ + ρ̄e (A3)

in terms of the weighted polarization vector.

Here, we employ a Lagrange multiplier, λ, to enforce the mod-
ified Poisson equation in our minimization of the electrostatic free
energy,

F el
[ϕ, ρ̄e, P̄, λ] = ∫ dr{

ϵ0

2
(∇ϕ)2

+ λ(ϵ0∇
2ϕ −∇ ⋅ P̄ + ρ̄e)}. (A4)

Taking a variation with respect to ϕ, we find that λ = ϕ. Plugging in
this dependence gives

F el
[ϕ, ρ̄e, P̄] = ∫ dr{

ϵ0

2
(∇ϕ)2

+ ϕ(ϵ0∇
2ϕ −∇ ⋅ P̄ + ρ̄e)}. (A5)

Using the divergence theorem, we can find the following identity:

ϕ(ϵ0∇
2ϕ −∇ ⋅ P̄ + ρ̄e) = ∇ ⋅ (ϵ0ϕ∇ϕ) − ϵ0(∇ϕ)2

−∇ ⋅ (ϕP̄) + P̄ ⋅ ∇ϕ + ρ̄eϕ. (A6)

Here, we can take the divergence terms to a surface far away,
where the potential and related fields are zero, leaving the following
expression for the electrostatic energy:

F el
[ϕ, ρ̄e, P̄] = ∫ dr{−

ϵ0

2
(∇ϕ)2

+ ρ̄eϕ + P̄ ⋅ ∇ϕ}. (A7)

Equalizing to zero the variational derivative δF el
/δϕ returns

the modified Poisson equation. Note that while the functional
appears non-convex, the unaltered electrostatic free energy in
Eq. (A1) ensures convexity of the electrostatic free energy. There-
fore, any function for the potential that satisfies the modified Poisson
equation is also guaranteed to minimize the electrostatic free energy
within the constraints.

APPENDIX B: CALCULATION OF THE GENERAL
DIELECTRIC FUNCTION

The normal component of the general dielectric tensor, ϵ ∗� ,
which satisfies Eq. (33), can be equated to the charge and polariza-
tion density variables by collecting terms so as to arrive at Eq. (24).
ϵ ∗� can, therefore, be defined as

ϵ ∗� = 1 −
(P̄ − ∫

x
0 ρ̄e(ξ)dξ)
ϵ0ϕ′

, (B1)

where both the bound charge density on dipoles and the ionic charge
density are included. We see that the direct substitution of the above
relation into Eq. (33) returns Eq. (24).
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62S. May, A. Iglič, J. Reščič, S. Maset, and K. Bohinc, “Bridging like-charged
macroions through long divalent rodlike ions,” J. Phys. Chem. B 112, 1685–1692
(2008).
63D. Frydel, “Mean-field electrostatics beyond the point-charge description,”
Adv. Chem. Phys. 160, 209–260 (2016).
64D. Frydel, “The double-layer structure of overscreened surfaces by smeared-out
ions,” J. Chem. Phys. 145, 184703 (2016).
65R. M. Adar, S. A. Safran, H. Diamant, and D. Andelman, “Screening length for
finite-size ions in concentrated electrolytes,” Phys. Rev. E 100, 042615 (2019).
66L. Blum and Y. Rosenfeld, “Relation between the free energy and the direct
correlation function in the mean spherical approximation,” J. Stat. Phys. 63,
1177–1190 (1991).
67R. Roth and D. Gillespie, “Shells of charge: A density functional theory for
charged hard spheres,” J. Phys.: Condens. Matter 28, 244006 (2016).
68J. Jiang and D. Gillespie, “Revisiting the charged shell model: A density
functional theory for electrolytes,” J. Chem. Theory Comput. 17, 2409 (2021).
69R. Roth, “Fundamental measure theory for hard-sphere mixtures: A review,”
J. Phys.: Condens. Matter 22, 063102 (2010).
70A. V. Gubskaya and P. G. Kusalik, “The total molecular dipole moment for
liquid water,” J. Chem. Phys. 117, 5290–5302 (2002).
71F. Booth, “The dielectric constant of water and the saturation effect,” J. Chem.
Phys. 19, 391–394 (1951).
72J. G. Kirkwood, “The dielectric polarization of polar liquids,” J. Chem. Phys. 7,
911–919 (1939).

73E. Gongadze, U. van Rienen, V. Kralj-Iglič, and A. Iglič, “Spatial variation
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