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ABSTRACT
Understanding the bulk and interfacial properties of super-concentrated electrolytes, such as ionic liquids (ILs), has attracted significant
attention lately for their promising applications in supercapacitors and batteries. Recently, McEldrew et al. [J. Phys. Chem. B 125, 2677
(2021)] developed a theory for reversible ion associations in bulk ILs, which accounted for the formation of all possible (Cayley tree) clusters
and a percolating ionic network (gel). Here, we adopt and develop this approach to understand the associations of ILs in the electrical double
layer at electrified interfaces. With increasing charge of the electrode, the theory predicts a transition from a regime dominated by a gelled
or clustered state to a crowding regime dominated by free ions. This transition from gelation to crowding is conceptually similar to the
overscreening to crowding transition.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0097055

I. INTRODUCTION

Ionic liquids (ILs) are concentrated electrolytes solely com-
posed of molecular ions, which are often bulky and asymmetric.1–4

As such, an IL does not contain electrolyzable solvents, and there-
fore, the electrochemical stability window of ILs is typically larger
than that of dilute aqueous electrolytes.3 This property permits
larger voltages for operation in supercapacitors, which increases the
energy that can be stored in the device.5,6 The promise of IL-based
technologies has caused significant interest in understanding ILs
and other concentrated electrolytes, such as water-in-salt electrolytes
(WiSEs)7–17 and salt-in-ILs (SiILs).18–24

Indeed, owing to the high concentration and lack of high dielec-
tric solvent, the energy of electrostatic interactions between nearest

neighbors is much larger than thermal energy.3 This manifests
through decaying oscillations in charge density around an ion in the
bulk or as a function of distance from an interface,25–27 referred to as
overscreening,28 which can give long-ranged electrostatic screening
lengths.29–33 It was shown by Levy et al.34 that these overscreen-
ing structures, from molecular dynamics simulations, can be well
described by a nearest-neighbor spin-glass model, which suggests
these long-ranged structures are built upon short-ranged Coulomb
interactions.

Surprisingly, surface force measurements performed in ILs
have reported extremely long-ranged monotonic decay lengths,35–44

referred to as underscreening.45,46 Gebbie et al.36,37 interpreted these
results as ILs behaving as “dilute electrolytes,” with ≪1% of ions free
and the remaining ions being bound in neutral ion pairs, which do
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not participate in electrode screening. Whereas, Han et al.40 have
proposed that these long-ranged screening lengths arise because
of the ∼10 nm domain formation of nano-aggregates in ILs, with
indications of these large aggregates being observed in molecular
simulations.47–50

These observations motivated many to study the role of ion
pair formation in ILs,51–57 and Avni et al.58 even accounted for
small finite aggregates (triples and quadruplets). Sometimes, only
free ions were explicitly treated, with ion pairs being implicitly
treated as “voids.”59–62 This proved to be successful in reproduc-
ing the conductivity of ILs based on a Nernst–Einstein relation,62

where 10%–20% of ions were free, with the remaining being bound
up in immobile aggregates. A dynamic exchange between these two
states occurs, with a small activation energy (∼1 kBT) for the exci-
tation from “bound” state to the “free” state. Thus, the concept of an
intrinsic narrow gap “ionic semiconductor,” as introduced in Ref. 3,
has received substantiation.62 That work showed a dynamic pic-
ture of the free ions, but the exact nature of the immobile clus-
ters was not discerned. Moreover, free ion approaches were also
able to explain the qualitative changes in differential capacitance
as a function of temperature,60 where a “melting” of “frozen”
structures is observed to occur as a function of increasing tem-
perature and voltage. However, the fraction of free ions there
was inferred from fitting the differential capacitance, and the
nature of the “frozen” states was only discussed on a qualitative
level.

There is no doubt that in such a concentrated system as ILs,
the formation of clusters larger than ion pairs should occur.47,48,50,63

McEldrew et al.49,64–66 developed a theory, based on the theories
of thermoreversible polymers,67–75 which was able to systematically
describe clusters beyond ion pairs, and even a percolating ionic net-
work of infinite size,76–78 referred to as the gel. One of the main
parameters of the theory is the number of associations an ion can
make, where it is assumed cations can only bond to anions and vice
versa, which determines the possible clusters that can be formed. If
ions can only form one bond, then ion pairs can only occur. If a
cation has four association sites, it can form various clusters; for clus-
ters containing a single cation, there can be free cations, neutral ion
pairs, and negatively charged triples, quadruplets and quintuplets, as
schematically shown in Fig. 1. These clusters can be much larger if
more cations are involved, which are accounted for in the theory of
McEldrew et al.49,64–66

The theory of McEldrew et al.64 was applied to bulk ILs,49

where a consistent theory of ionic transport was also devel-
oped based on vehicular motion of the clusters,49,79 and other
concentrated electrolytes.65,66 While the ionic association theory
has given a detailed description of the cluster statistics in the
bulk, it has not yet been applied to predict the distributions
of clusters near charged interfaces in the electrical double layer
(EDL).80

Here, we develop a theory of aggregation and gelation of ILs in
the EDL. Before proceeding to the mathematical formalism of this
theory, we briefly discuss the principles of the chemical equilibrium
that hold in a theory accounting for thermoreversible associations
in the bulk and the EDL of ILs. This discussion will be followed by
a short preview of the results, which shall foreshadow the remaining
paper.

FIG. 1. Schematic of possible aggregates containing one cation. Cations are
shown in red and anions in blue, where both can form a maximum of four associa-
tions, as shown by the “dangling bonds.” A free cation and anion are shown in the
top right and bottom left corner, respectively. Dotted lines encircling the different
clusters have been used to clearly demark each cluster.

II. CHEMICAL EQUILIBRIUM CONSIDERATIONS
One of the first questions that arises when considering clus-

tering in the EDL is what chemical equilibrium should hold? In
the bulk, McEldrew et al.64 established the equilibrium between
l free cations and m anions with clusters of rank lm (in which there
are l cations and m anions associated). This bulk cluster equilibrium,
as seen in Fig. 2, was shown to agree with the cluster distribution
independently computed from molecular simulations for ILs.49 To
study the EDL, there must be an equilibrium between ions near the
interface and the bulk.

If a “standard approach” is taken for the EDL–bulk equilibrium,
i.e., where the ions in the bulk are assumed to accumulate in the EDL
based on a Poisson–Boltzmann or Poisson–Fermi distribution from
the bulk concentrations,80–83 the ions are not permitted to reversibly
associate in the EDL.56,59–61 Such approaches bring ions to the EDL
based on the charge and volume of the ion, but once the species are
in the EDL, no further change of the ionic associations can occur.
Moreover, with such an approach, it is not clear how the gel phase,
if it forms, should be treated, and assumptions about how it will
respond to an electrostatic potential will be required. For example,
the gel could be assumed to not respond to the potential/field, and
it remains as a constant background (charge), similar to solid elec-
trolytes.84 However, the gel is not a rigid solid;64 so, this approach
would have shortcomings. Alternatively, an approach similar to how
solvent is treated in the dilute electrolyte limit could be taken, i.e.,
the gel can be taken as some constant background dielectric, which
would be trivially pushed out of the EDL based on how ions come to
the EDL.80,83

In the bulk, the gel phase is in equilibrium with free ions, and
changes to the physical variables (such as temperature) can cause
the balance of the equilibrium to shift.64 Therefore, to model the
cluster equilibrium in the EDL, we demand that the cluster distri-
bution in the EDL has the same form as in the bulk but is altered by
the differing volume fractions of cations and anions in the EDL. An
equilibrium between the bulk and EDL then needs to be established,
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FIG. 2. Schematic depicting all possible chemical equilibria for thermoreversible
associations between ions of an IL, in the bulk and EDL. Free cations in the bulk
are denoted by l, and free anions m, which can form clusters of rank lm. This
equilibrium is referred to as the bulk cluster equilibrium. An equivalent equilib-
rium should hold in the EDL, where barred quantities are used. There is also an
equilibrium between the bulk and EDL.

which keeps both the bulk and EDL cluster equilibria consistent.
Note only one of the four EDL–bulk equilibria (bulk free ions–EDL
free ions; bulk free ions–EDL clusters; bulk clusters–EDL free ions;
bulk clusters–EDL clusters) shown in Fig. 2 needs to be established
for the remaining three to also hold. This approach should naturally
show how the gel and all clusters respond to electrostatic fields, as
a consequence of all chemical equilibria shown in Fig. 2 being held
consistently.

III. PREVIEW
The results of this theory shall be briefly summarized, as there

are conceptual advances here that are beneficial to bear in mind
before the technical parts are introduced. Firstly, the main advance-
ment this paper makes is the account of the chemical equilibrium
between clusters within the EDL. Consideration of this equilib-
rium permits a natural way to investigate strongly aggregating and
gelating electrolytes in the EDL.

This theory predicts the following. For electrolytes that do not
contain a gel, the large clusters are broken down and expelled from
the EDL in favor of free ions, as schematically shown in Fig. 3.
The consideration of clusters beyond free ions results in a differen-
tial capacitance response that is larger than that of just a free ion
approach. Overall, this is the expected result for the pre-gel regime,
and it mainly differs from that of previous free ion theories (FIT)
through quantitative measures.

For electrolytes that contain gel, the physical picture is more
complex. It is found that the gel can screen electrode charge. This is
because the gel becomes charged in an electrostatic potential, with

FIG. 3. Schematic of changes to the clustering in the EDL. On the left, depicted is a
negatively charged electrode, which polarized the EDL with a potential distribution
decaying to the right. The same notation for the clusters as Fig. 1 is used, but
where each ion can form a maximum of three associations.

the gel being counterion dominated. This arises because the equilib-
rium between cation–anion associations changes in the EDL, where
there are unequal numbers of cations/anions. For an accumulation
of anions (cations) in the EDL, one finds that the gel is also negative
(positive), because the equilibrium tries to shift back (Le Chatelier’s
principle) and remove some of the free anions (cations). Moreover,
the cations (anions) are removed for positive (negative) potentials,
which causes cations (anions) to dissociate from the gel to replenish
the free cation (anion) concentration. At sufficiently large potentials,
the ratio of cations/anions (anions/cations) in the EDL becomes
small enough for the gel to be destroyed. This causes the gel to
dissociate and release large aggregates.

For even greater values of the potential, these large aggregates
are also broken down, and more and more free ions accumulate in
the EDL, until the crowding regime is reached. Here, crowding refers
to an electrolyte composition where practically only free counteri-
ons exist, which can be achieved locally in the EDL. Gradually, the
excluded volume effect causes the thickness of the EDL to increase.
Thus, the differential capacitance of the EDL, which is inversely pro-
portional to the EDL thickness, starts decreasing at large potential
drops across the EDL. At small voltages, however, the differential
capacitance increases,81,82 and, therefore, the capacitance curve will
be a typical “double hump camel” shape overall.81 Again, we find
that accounting for the gel/cluster response increases and smooths
out the response in comparison to a free ion theory.

Note that one must not expect the theory to provide the picture
with “molecular resolution,” explicitly showing overscreening oscil-
lations of charge density and the spatial structure within clusters.
Within the large clusters or the gel, alternation of counterions and
coions should give rise to such oscillations. The presented theory is
able to provide a “coarse-grained” structure of charge distribution in
the EDL, spread over different clusters, the balance between which
shifts with the polarization of the electrode. Needless to say, such
theory will be thermodynamic, not covering any dynamic aspects of
the EDL charging.

IV. THEORY
A. Ionic liquid associations

The limit of a symmetric, incompressible IL is employed here,
i.e., one where the volumes of cations and anions are the same
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(v+ = v− = v), no voids are considered (every lattice site is either
occupied by a cation or anion), and the number of associations a
cation and anion can form is the same (referred to as functional-
ity, given by f+ = f− = f ). It is assumed that cations can only bind to
anions, and anions to cations, i.e., no cation–cation and anion–anion
associations are accounted for which has been shown to be a good
approximation for ILs in Ref. 49. No interactions beyond ions that
are directly associated are taken into account when determining the
extent of associations (in the bulk). The ions are assumed to form
Cayley tree clusters, i.e., ones in which there are no intra-cluster
loops. Therefore, cations and anions can reversibly form “branched
alternating co-polymers” of various sizes, from ion pairs to a perco-
lating ionic network. These clusters/gel are schematically shown in
Figs. 1 and 4.

Physically, these short-range associations between cations and
anions in ILs represent the strong electrostatic correlations (beyond
mean-field) between ions of opposite sign. Levy et al.34 showed
that the discrete charges of ions with a given packing (e.g., from
molecular dynamics simulations) could be well reproduced by a
nearest-neighbor spin-glass theory that maximizes their alternating-
charge ordering, which implies that our short-ranged model of
Coulomb correlations should be accurate for these concentrated
electrolytes. Moreover, in Ref. 49,it was found that IL ions have well-
defined “hot spots,” where cations (anions) prefer to reside around
anions (cations), which also supported these assumptions and per-
mitted the functionality to be determined (from the number of hot
spots).

ILs are the simplest possible super-concentrated electrolyte,
and they should serve as a testing ground to investigate the EDL of

FIG. 4. Schematic of coexisting sol and gel. Cations and anions are shown in red
and blue, respectively, and both have a functionality of 3. The percolating ionic
network, i.e., the gel, is indicated by the enclosed dashed line. The remaining
cations and anions are part of the sol. In the absence of the gel, all cations and
anions are part of the sol.

electrolytes capable of forming associations beyond ion pairs. For
further details about the IL limit, see Ref. 49.

The electrolyte is treated on the level of a lattice-gas.49,64 The
number of lattice sites, Ω, is given by

Ω =∑
lm
(l +m)Nlm +Ngel

+
+Ngel

−
, (1)

where N lm is the number of clusters of rank lm and Ngel
+/−

is the num-
ber of cations/anions in the gel phase. The cations and anions that
are not part of the gel, i.e., all of the free cations, free anions, and
clusters of rank lm, are part of the sol. This is schematically shown
in Fig. 4. In the absence of gel, all cations and anions are in the sol.
Throughout, free ions and clusters shall not be explicitly referred to
as being in the sol, as they are such by definition. Therefore, we do
not explicitly include sol superscripts for free ions and clusters for
clarity of notation.

Dividing Eq. (1) by the total number of lattice sites yields

1 =∑
lm
(l +m)clm + cgel

+
+ cgel
−

, (2)

where clm = N lm/Ω is the dimensionless concentration (# per lat-
tice site) of rank lm clusters, and the dimensionless concentration
of cations/anions in the gel is cgel

+/−
= Ngel

+/−
/Ω, i.e., the volume frac-

tion cgel
+/−
= ϕgel
+/−

. The volume fraction of a cluster of rank lm is given
by ϕlm = (l +m)clm. The volume fraction of cations and anions in
the sol phase is

ϕsol
+ =∑

lm
lclm, (3)

ϕsol
− =∑

lm
mclm. (4)

The total volume fraction of cations/anions is ϕ+/− = ϕsol
+/−
+ ϕgel
+/−

.
When there is no gel, the superscript sol shall be dropped for clar-
ity of notation. In Fig. 4, the partitioning of the sol and gel is
schematically shown.

The free energy of the cluster equilibrium49,64 is taken to be

βF =∑
lm
[Nlm ln(ϕlm) +NlmΔlm]

+ Δgel
+

Ngel
+
+ Δgel

−
Ngel
−

, (5)

where β = 1/kBT is the inverse thermal energy, Δlm is the free energy
of formation of a cluster of rank lm from free cations and anions,
and Δgel

+/−
is the free energy change of cations/anions associating with

the gel.
Establishing chemical equilibrium,49,64,66 as shown in the

supplementary material, the cluster distribution is expressed as

clm =
Wlm

λ
(λ f ϕ10)

l
(λ f ϕ01)

m, (6)

where λ = exp(−βΔ f+−) is the ionic association constant, with
Δ f+− = Δu+− − TΔs+− denoting the free energy of an association,
determined by the binding energy (Δu+−) and (configurational)
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entropy of an association (Δs+−). Here, W lm is the number of ways
to arrange l cations and m anions in a Cayley tree,49,64 i.e., the com-
binatorial contribution to the free energy of formation of a cluster,
which is given by

Wlm =
( f l − l)!( f m −m)!

l!m!( f l − l −m + 1)!( f m −m − l + 1)!
. (7)

The cluster distribution, clm, is expressed in terms of ϕ10 and
ϕ01; but, in principle, these are unknown quantities. In the bulk, the
volume fraction of cations and anions is, however, known. Introduc-
ing association probabilities, pij, the probability that an association
site of species i is bound to species j, permits the volume fraction
of free cations to be written as ϕ10 = ϕ+(1 − p+−) f and that of free
anions as ϕ01 = ϕ−(1 − p−+) f .

The association probabilities can be determined through
conservation of associations, i.e.,

f ϕ+p+− = f ϕ−p−+ = ζ, (8)

and mass action law given by

λζ =
p+−p−+

(1 − p+−)(1 − p−+)
, (9)

to give the probability of cations binding to anions,

p+− =
1 + f λ −

√

1 + 2 f λ + f 2λ2
(1 − 2ϕ+)2

2 f λϕ+
, (10)

and that of anions binding to cations,

p−+ =
1 + f λ −

√

1 + 2 f λ + f 2λ2
(1 − 2ϕ−)2

2 f λϕ−
. (11)

Note that the volume fractions have been explicitly retained in these
equations, as these probabilities can be investigated as a function of
the volume fraction of cations and anions.

When the probability of a cation (anion) having another
cation (anion) connected through an anion (cation), reaches 1 a
percolating ionic network can form. This condition is given by
1 = ( f − 1)2p∗+−p∗−+, where the stars are used to denote the criti-
cal probabilities for the formation of the percolating ionic network.
When the probabilities reach this condition, the volume fractions of
cations and anions in the gel and sol must be determined. Flory’s
treatment of the post-gel regime is employed, in which the volume
fraction of free ions can be written equivalently in terms of over-
all association probabilities, pij, and association probabilities taking
into account only the species residing in the sol, psol

ij ,

ϕ+(1 − p+−) f
= ϕsol
+ (1 − psol

+−)
f , (12)

ϕ−(1 − p−+) f
= ϕsol
− (1 − psol

−+)
f . (13)

Using Eqs. (12) and (13) in addition to Eqs. (8) and (9),
with sol-specific quantities, permits the determination of the sol
probabilities and volume fractions. The fraction of species, i, in the
sol is given by wsol

i = ϕsol
i /ϕi. See the supplementary material for

more details.

B. Cluster/gel composition of ILs
Having summarized the equations for the cluster equilibrium,

we turn to understanding the behavior of the system with unequal
volume fractions of cations and anions. In principle, one cannot
arbitrarily control the volume fractions of cations or anions. The
charge of an electrode sets the number of excess counter charges
that must be in the EDL, to have overall charge neutrality. These
charges shall be distributed in space according to the Poisson equa-
tion. However, it is quite useful for conceptual understanding to
perform a thought experiment where one can change the volume
fraction of cations/anions arbitrarily. Therefore, we shall investigate
the composition of the electrolyte as a function of the volume frac-
tion of cations. To start, we shall briefly summarize the composition
of the electrolyte in the bulk, i.e., where ϕ

+
= ϕ
−
= 1/2, for λ = 1

and λ = 10, with f = 3. Then, we shall progress onto investigating
ϕ
+
≠ ϕ
−

.

1. Bulk composition
In the bulk, the critical value of the association constant for

the formation of the gel is given by λ∗ = 2( f − 1)/[ f ( f − 2)2
]. For

f = 3, this puts λ∗ = 4/3, which means the chosen association con-
stants are on either side of the gel point. These two different values
of λ, 1 and 10, can be considered as an example of those at a high and
low temperature, respectively.

For larger functionalities, λ∗ < 1, which might be surprising, as
this corresponds to a positive free energy of an association, Δ f+−. It
was found in Ref. 49, from the temperature dependence of the asso-
ciation constant, that the binding energy is negative, but the entropy
of an association is also negative, which may result in Δ f+− > 0. The
reason why a gel can form with λ < 1, and why there are still sig-
nificant associations despite Δ f+− ≥ 0, can be understood in several
ways. The free energy of an association, Δ f+−, is not the only contri-
bution to the free energy of formation of clusters of rank lm, there are
additional entropic contributions (combinatorial entropy and part
of the configurational entropy—see Refs. 49 and 64 for more details)
that drive the system toward a mixture rather than a pure state (of
free ions). This has also been found by Lee et al.52 when considering
ion pair formation in ILs, where 2/3 of ions were found to be free.
This was because the Debye screening length was much shorter than
the radius of an ion, and, therefore, there was no enthalpic benefit
for the formation of ion pairs, which meant the entropy of mixing
decided the fraction of free ions, i.e., the IL was effectively treated
as an ideal solution. Alternatively, this can be understood from the
mass action law, Eq. (9), which shows that the association probabil-
ities only vanish when λ = 0. The association constant is effectively
the equilibrium constant of the formation of an association, which
means that when λ = 1, it is equally favorable to form an association
as not to, and, therefore, entropy maximization dictates that a mix-
ture shall form. As the entropy of an association was found to be
positive in Ref. 49, the association constant tends to 0 at large tem-
peratures, which is the expected limit of no associations. Note that
associations between cations–anions still occur, although Δ f+− > 0,
due to the negative binding energy.

Having described the extent of associations for different λ, we
turn to understanding the cluster distribution in more detail. In
Fig. 5, the volume fraction of each cluster of rank lm is shown as a
function of the size of each cluster (l +m) for the bulk ϕ

+
= ϕ
−
= 1/2
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FIG. 5. The composition of the bulk IL is dominated by neutral and singly charged clusters. Volume fraction of each rank of cluster, for a given charge ∣l − m∣ = q,
with q = 0, 1, 2, 3 and f = 3, as a function of the size of a cluster l + m.

with f = 3. This is plotted for various overall charges of clusters, with
charges up to ±3 being considered. As it is the symmetric case, the
volume fraction of a +q charged cluster is equal to the −q charged
clusters. Therefore, these are summed together, and each different
symbol represents a ∣l −m∣ = q, for q = 0, 1, 2, 3.

For λ = 1, see Fig. 5 (left), the IL is in the pre-gel regime. There
is ∼16% of free ions, with the remaining fraction of ions being bound
up into clusters. The neutral ion pairs are the next most popu-
lous species, followed by singly charged triples, etc. These singly
charged and neutral clusters dominate the electrolyte composition
(for a symmetric IL in the bulk64). A cluster with ∣l −m∣ = 2 can first
occur when there are four ions in the cluster. The volume fractions
of these clusters initially increases slightly with l +m, since for larger
l +m, not all association sites must be occupied (unlike l +m = 4 for
f = 3), before decreasing again for large cluster ranks. A similar story
occurs for ∣l −m∣ = 3, where it is found to have even smaller volume
fractions.

For λ = 10, see Fig. 5 (right), the IL is in the post-gel regime,
with most of the ions being bound in the gel. For the remaining clus-
ters, a similar situation can be seen for the populations of clusters.
For more information about the bulk cluster composition of an IL,
see Ref. 49.

2. “EDL” composition
In Fig. 6 (left), the association probabilities as a function of

volume fraction of cations is shown, for λ = 1 with functionality of
f = 3. As the volume fraction of cations increases, the association
probability of cations binding to anions (p

+−
) decreases and the

association probability of anions binding to cations (p
−+
) increases.

The opposite is true for a decreasing volume fraction of cations. This
is a consequence of the conservation of associations, which states
p
+−
/p
−+
= ϕ
−
/ϕ
+

. At ϕ
+
= 1, the association probability of cations

binding to anions necessarily goes to zero, p
+−
= 0, and p

−+
reaches

a constant value equal to or less than 1, and vice versa for ϕ
+
= 0.

For λ = 10, the association probabilities are sufficiently large to
create a percolating ionic network in the bulk, as seen by p

+−
p
+−

being larger than the dashed horizontal line in Fig. 6 (right). Again,
p
+−

decreases with increasing ϕ
+

and p
−+

increases with increas-
ing ϕ

+
. There comes a point, for both small and large ϕ

+
, that the

volume fraction of cations (or anions) cannot sustain a percolating
ionic network, and p

+−
p
+−

drops underneath the threshold.
Next, how these association probabilities influence the cluster

distribution of the electrolyte is shown in Fig. 7 as a function of the
volume fraction of cations. For λ = 1, the volume fraction of free
cations (ϕ10) increases with the volume fraction of cations (ϕ

+
) and

the volume fraction of free anions (ϕ01) decreases with increasing
ϕ
+

. At ϕ
+
= 1, ϕ10 = 1 and ϕ01 = 0, and vice versa for ϕ

+
= 0. This is a

reflection of the changing association probabilities and volume frac-
tions, as just discussed. The volume fraction of ion pairs (ϕ11) and
aggregates beyond ion pairs (ϕlm > 11) decreases for increasing and
decreasing volume fractions of cations (relative to its bulk value).
This is because the average association probability, (p

+−
+ p
−+
)/2,

decreases as the volume fractions of cations is changed from the bulk
value.

For λ = 10, the volume fraction of free cations and free anions
behaves in an analogous manner to that for the case of λ = 1,
and the volume fraction of ion pairs is always extremely small.

FIG. 6. The IL becomes less associating as the volume fractions of cations increases/decreases from the bulk value. Association probabilities, as indicated in the legend, as
a function of volume fraction of cations. Two association constants are shown, as indicated in the titles. Both plots are for a functionality of 3, and the horizontal dotted line
denotes the critical probability for the onset of a gel, p∗

+−
p∗
−+
= ( f − 1)−2.
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FIG. 7. Free ions become increasingly
dominant and the gel is destroyed for
sufficiently charged systems. Volume
fractions of free cations (ϕ10), free
anions (ϕ01), and ion pairs (ϕ11) as a
function of the volume fraction of cations
(top panels). Volume fractions of aggre-
gates beyond ion pairs (ϕlm > 11), vol-

ume fraction of cations in the gel (ϕgel
+
),

and volume fraction of anions in the gel
(ϕgel
−
) as a function of volume fraction of

cations (bottom panels). Again, all plots
are for f = 3 and the two association
constants are shown in the titles.

The aggregates beyond ion pairs behave qualitatively differently,
however, with a highly non-monotonic dependence on ϕ

+
. To

understand this, the behavior of the gel must first be described. In
the bulk, the system is significantly gelled. As the volume fraction
of cations increases (ϕ

+
), the volume fraction of cations in the gel

(ϕgel
+
) also increases and the volume fraction of anions in the gel

(ϕgel
−
) decreases. This is because the prevalence of cations shifts the

free ion–gel equilibrium to accommodate more cations. Therefore,
the gel becomes charged and decreases in total volume fraction, until
it reaches the critical volume fraction where it can no longer be
sustained. This decreasing volume fraction of gel causes a dramatic
increase in the volume fraction of aggregates beyond ion pairs, as
closer to the gel point, larger and larger clusters dissociate from the
gel. When the critical volume fraction to sustain a gel is reached,
there is no longer gel to create large clusters, and the decreasing aver-
age association probability causes a dramatic decrease in the volume
fraction of these larger clusters.

Overall, the phenomenology described in this thought exper-
iment is exactly what is expected for the behavior of the clusters
in the EDL: a transition from gelation/aggregation to crowding.
Therefore, what is required is a connection between the volume frac-
tions of cations/anions and the electrostatic potential, which can
be linked to the spatial distribution of charges through the Poisson
equation.

Inspecting the equations for p
±∓

and ϕ10/01 demonstrates that,
for a given volume fraction of cations, the volume fractions of free
anions and free cations are not independent, but they are con-
strained by the associations. Therefore, if EDL–bulk equilibrium was
established with “standard approaches,” such as Boltzmann or Fermi
functions for free cations and free anions, the system of equations
(the above equations for the concentrations of each species and the
Poisson equation) becomes overdetermined and the cluster distri-
bution is no longer consistent. Therefore, an alternative approach
to investigate the EDL properties in a consistent way is sought.

In the supplementary material, this is shown explicitly from the
free energy. Moreover, alternative approaches to make the cluster
distribution consistent everywhere is outlined.

It is interesting to note that this observation also applies to
approaches, such as Refs. 60 and 61, where the associations were only
treated through the explicit treatment of the remaining free ions. In
the bulk, the number of free ions was determined by the binding
free energy of cations and anions. The bulk concentration of free
cations and free anions was then utilized in a Poisson–Fermi the-
ory for the EDL.56,58,59,61 This essentially treated the associations as
irreversible in the EDL, but reversible in the bulk, which is also how
Ref. 51 investigated strongly associating ILs within a sophisticated
classical density functional theory. For thermoreversible associa-
tions in the EDL, the number of associations based on the concen-
tration of cations and anions must also be determined in the EDL.
This deficiency in such approaches56,58,59,61 does not, however, qual-
itatively change the predictions of those theories in terms of the
free ions.

C. Boltzmann closure of free ions
To close the system of equations without overdetermining, a

single relationship is required to connect the electrostatic potential
with the volume fractions. To achieve this, the following closure rela-
tionship is taken based on the ratio of free cations and free anions in
the EDL

ϕ10

ϕ01
e−2αu

=
ϕ̄10

ϕ̄01
=

ϕ̄+(1 − p̄+−) f

ϕ̄−(1 − p̄−+) f , (14)

where the bar has been used to indicate quantities in the EDL and
u is the electrostatic potential in units of thermal voltage (which
is given by 1/βe, with e denoting the elementary charge, i.e., the
magnitude of the charge of an ion studied here). The factor α is a
parameter that describes additional correlations beyond mean-field
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electrostatics (defined such that 0 ≤ α ≤ 1), as introduced in Ref. 59,
and shown to work well in Ref. 85. Since λ accounts for short-
ranged attractive interactions between cations–anions, only the
short-ranged repulsion between cations–cations/anions–anions are
considered in α. This prevents double counting the short-ranged
attraction between cations–anions. Moreover, α is not assumed
to be based on the free ion fractions, but the total ion fractions,
since the gel can also become charged. This parameter acts to
smooth out the response of ions to the electrostatic potential, as the
Poisson–Boltzmann (or Fermi) distribution is well known to overes-
timate the response.80,83 This is analogous to the dressed ion theory,
where the charge of an ion is rescaled to smaller values because of
correlations between ions.38

Equation (14) assumes that free ions behave in a Boltzmann
way while being consistent with the cluster distribution and incom-
pressibility constraint. This expression can be used to solve for
the local volume fraction of cations or anions within the EDL,
which then determines the local free cation and free anion volume
fractions. These can be used in the cluster distribution given by

c̄lm =
Wlm

λ
(λ f ϕ̄ 10)

l
(λ f ϕ̄ 01)

m, (15)

to find the concentrations of all clusters. Moreover, when the free
cation/anion volume fractions are known, so are the association
probabilities. This means that the gel can also be treated in a
consistent way.

For λ≪ 1, the association probabilities tend to zero p
+−
= p
−+

≈ 0, which means ϕ̄+/ϕ̄− ≈ e−2αu. Using the incompressibility con-
dition, this can be solved to give ϕ̄+ − ϕ̄− = − tanh αu for the
charge density, which is the expected result when there are no
associations.81,82

1. Linear response
When there are associations, the approach cannot generally

be solved analytically, but at linear response, some insight can be
gained. Taking a linear expansion of Eq. (14) and introducing a
symmetric perturbation of free ions, ϕ̄10 = ϕ10 + δϕ̄ f and ϕ̄01 = ϕ01

− δϕ̄ f , yield c̄10 = c10(1 − αu) for the free cation concentration and
c̄01 = c01(1 + αu) for the free anion concentration. Using this in the
cluster distribution yields

c̄lm = clm[1 − (l −m)αu]. (16)

Introducing the EDL volume fraction and probabilities as the
bulk perturbed by a small value, ϕ̄± = 1/2 ± δϕ̄ and p̄±∓ = p ± δp̄,
respectively, the volume fraction of cations changes by

δϕ̄ =
−(1 − p)αu

2[1 + ( f − 1)p]
, (17)

where p = (1 + f λ −
√

1 + 2 f λ)/ f λ is the association probability in
the bulk.

Therefore, the Poisson equation takes the form

∇
2u =

e2βαu
vϵ0ϵ ∑lm

(l −m)2clm =
e2βαu
vϵ0ϵ

(1 − p)
[1 + ( f − 1)p]

, (18)

where ϵ0 and ϵ are the permittivity of free space and relative permit-
tivity, respectively, and v is the volume of an ion (i.e., a lattice site).
The screening length given by

ℓ =
1
√

ακ

¿

Á
ÁÀ

1 + ( f − 1)p
(1 − p)

(19)

is based on the ionic strength of the cluster distribution, with
κ =
√

vϵ0ϵ/e2β. When there are no associations, i.e., p = 0, the Debye
length is recovered. In the opposite limit, the association probabil-
ity tends to 1, and extremely large screening lengths can emerge.
This expression for the ionic strength in terms of p was previously
derived in Ref. 49 from modifying the expression for the weight
average degree of aggregation. Therefore, the Boltzmann closure of
free ions appears to be well justified at linear response in the pre-gel
regime.

Gebbie et al.36,37 have suggested that ILs screen the field in a
Boltzmann way with few free ions. Thus, this closure relation could
also be assumed to hold in the post-gel regime. This would mean
the screening length in Eq. (19) also holds in the post-gel regime,
because it can be derived from the total volume fractions and prob-
abilities. The contribution to this screening length from the clusters
and gel can be derived. Again, a symmetric perturbation for the
change in volume fractions of sol (δϕ̄sol

+ = −δϕ̄sol
− = δϕ̄ sol

) and sol
probabilities (δp̄sol

+− = −δp̄sol
−+ = δp̄ sol

) is introduced. In the system of
equations, there are two unknowns, δϕ̄ sol and δp̄ sol; therefore, two
equations are required. One of these equations is Flory’s treatment of
the post-gel regime; the second equation is the conservation of asso-
ciations in the sol. Solving these equations, while using the previous
results for δϕ̄ and δp̄, gives

δϕ̄ sol
= −

wsol
(1 − psol

)αu
2[1 + ( f − 1)psol

]

, (20)

which is an analogous expression for the sol quantities. Therefore,
the change in the volume fraction of the gel is given by

δϕ̄ gel
= −

αu
2
{
(1 − p)

1 + ( f − 1)p
−

wsol
(1 − psol

)

1 + ( f − 1)psol }. (21)

These results can be used to decompose the total screening length
into the contributions from the sol and the gel.

In Fig. 8, the dimensionless ionic strength, (κℓ)−2
= ∑lm

(l −m)2clm (taking α = 1), is shown as a function of the association
constant. For λ < λ∗, where the star is used to denote the critical
association constant for the formation of the gel, the ionic strength
is determined by the clusters. For an association constant just above
the critical value, both clusters in the sol and the gel contribute to
the screening at linear response. For λ≫ λ∗, practically only the
gel contributes to the screening at linear response. This indicates
that approaches based on free ions,60,61 which follow the sol con-
tribution closely,49 underestimate the ability of the electrolyte to
screen.
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FIG. 8. The ionic strength decreases with association constant, but in the post-gel
regime, the gel dominates the ionic strength. Dimensionless ionic strength, given
by 1/(κℓ)2, as a function of association constant, λ, for f = 3. Note the x axis is
on a logarithmic scale. The α parameter is set to 1.

2. Nonlinear response
Generally, the differential equation that needs to be solved is

given by

∇
2u = −κ2

[∑

lm
(l −m)c̄lm + c̄gel

+
− c̄gel
−
] = −κ2

[ϕ̄+ − ϕ̄−]. (22)

A constant charge boundary condition at the interface is taken and a
zero electrostatic potential in the bulk is used. Numerical results for
the solution to this nonlinear differential equation shall be shown in
Sec. V. Note that a Stern layer is not considered here for clarity of
discussing the new results. In the supplementary material, a step-by-
step guide of how to implement the equations to obtain a numerical
solution is given.

V. RESULTS
A. EDL structure

To start, the description of the nonlinear solution to Eq. (22)
in terms of the electrostatic potential and charge density shall be
outlined. The results for these are shown in Fig. 9 as a function of dis-
tance from an interface that has a charge of 0.02 Cm−2 for the studied

association constants. Both the electrostatic potential (in units of
thermal voltage) and charge density (in units of the charge per unit
lattice site) are found to monotonically decay from the interface, as
expected from a local density approximation.

For λ = 1, the potential and charge density decay to the bulk
values within ∼30/κ. The crowding regime, defined by c01/10 ≈ 1 and
c10/01 ≈ 0, which has to be taken here because an incompressible IL
can only accumulate charge density, not number density in the EDL,
can clearly be seen, since the dimensionless charge density reaches
−1 at the interface. For λ = 10, the electrostatic potential and charge
density decay further from the interface, owing to the larger screen-
ing lengths from more associations. The crowding regime is also
reached near the interface, as can be seen from the charge density
reaching −1. These results are expected, and we can now turn to
decomposing the charge density into the different contributions to
understand the response of the IL further.

In Fig. 10, the charge density of Fig. 9 is decomposed into the
free ions, ion pairs, clusters beyond ion pairs, and cations and anions
in the gel. For λ = 1, free anions substantially increase close to the
interface, where the crowding regime is reached. The free cations are
expelled from the EDL rapidly. Both ion pairs and finite aggregates
beyond ion pairs are depleted at length scales between the crowd-
ing regime of free anions and the expulsion of free cations. This is
because it is more favorable to have the free ions in the EDL than
clusters.

For λ = 10, the structure of the EDL is more complicated.
At short distances from the positively polarized electrode, the free
anions again reach the crowding regime. The free cations and ion
pairs are practically zero in the bulk and do not appear to change
much in the EDL. For increasing distances from the interface, ϕlm > 11
initially increases, as the number of cations/anions starts to equalize,
which permits the large aggregates to be created. This occurs until
the gel point is reached, where the large clusters combine. For fur-
ther distances, there is a significant volume fraction of gel, but the
number of cations and anions in the gel are not equal. There are
more anions in the gel than cations, which means the gel screens
the field. In fact, in this regime, the field is practically only screened
by the gel, since the volume fraction of free anions is much smaller.
Again, the gel can screen the electrostatic potential because of the
shift in the equilibrium between how the free ions associate to the
gel when there are unequal numbers of cations/anions.

FIG. 9. Monotonic behavior and decay of electrostatic potential and charge density. Electrostatic potential in units of thermal voltage (left panel) and charge density in units
of charge per lattice site (right panel) in the EDL as a function of the interface for a surface charge density of 0.02 Cm−2. All calculations are for f = 3 and α = 0.2 at the two
association constants shown. For T = 300 K, v = 1 nm3, ϵ = 5, the inverse screening length is κ ≈ 0.85 Å, which means the EDL structure is of a similar length scale to the
size of an ion.
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FIG. 10. For strongly associating ILs, the
gel can screen the electrode charge, but
only far from the interface, as crowding
of free ions near the interface domi-
nates. Volume fractions in the EDL as
a function from the interface for a sur-
face charge density of 0.02 Cm−2. Top
panels show the volume fraction of free
cations (ϕ10), free anions (ϕ01), and
ion pairs (ϕ11). The bottom panels show
the volume fractions of finite aggregates
beyond ion pairs and the volume frac-
tion of cations in the gel and volume
fraction of anions in the gel. These cal-
culations were performed with the same
parameters as Fig. 9.

B. Differential capacitance
The differential capacitance, C, can be calculated numerically

within this theory through

C
C0
=

dσ̃
du0

, (23)

where σ̃ is the dimensionless surface charge density, C0 = ϵ0ϵκ is the
Debye capacitance without associations, and u0 is the dimensionless
potential drop across the entire EDL. When λ ≈ 0, i.e., all free ions,
and α = 1, the differential capacitance numerically calculated within
the presented theory exactly reproduces that of Refs. 81 and 82.

In Fig. 11, the numerical differential capacitance as a function
of potential is plotted (solid line) alongside the analytical expression
derived in Ref. 59,

C
C0
=
√

αγ
cosh(αu0/2)

1 + 2γ sinh2
(αu0/2)

¿

Á
ÁÀ

2γ sinh2
(αu0/2)

ln{1 + 2γ sinh2
(αu0/2)}

, (24)

where γ is the free ion fraction based on a similar free ion fraction
(dotted line) to the cluster distribution, where the additional factor
of √αγ comes from the definition of κ taken here. Note that the
treatment in Ref. 60 is based on just the free ions in an IL, referred
to as a free ion theory (FIT), where there are only thermoreversible
associations in the bulk.

For λ = 1, the free ion fraction is ∼0.16, which is used in Eq. (24)
of the FIT. Since the free ion fraction is smaller than 1/3, a clear
“camel”81 shaped differential capacitance curve is obtained from
Eq. (24), i.e., initially the differential capacitance increases (in the
overscreening regime) before a maximum is reached, after which the
differential capacitance is governed by universal charge conservation
laws.81 In contrast, the numerical solution for the theory presented
here only has a slight “camel” shape, with the differential capacitance
at zero charge also being larger than the FIT.

For λ = 10, the free ion fraction is found to be ∼0.01. Again,
the FIT has a significant U-shape near the potential of zero charge,
which goes through a maximum before the crowding regime is
reached and the differential capacitance decreases (note that the

FIG. 11. Account of clusters beyond free ions in the EDL causes the capacitance at zero charge to increase, and the curves become more bell-like. Differential capacitance
in units of Debye capacitance without associations, C0 = ϵ0ϵκ ≈ 75–100 μFcm−2, as a function of voltage in units of thermal voltage (25.6 mV at room temperature). The
solid (red) line corresponds to the differential capacitance computed numerically for the theory presented here. The dotted (black) line corresponds to the expression in the
free ion theory (FIT) of Ref. 60 with free ion fractions, γ, of 0.16 and 0.01 for λ = 1 and λ = 10, respectively. All curves are plotted for α = 0.2.
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differential capacitance follows C/C0 ∝ 1/
√

u0 for u0 > 40, which
is where ∣ρ∣ = 1 reaches in Fig. 9 and, therefore, the employed
definition of the crowding regime is reasonable). The new theory
presented here, in contrast, only has a slight “camel” shape, which
is stretched out over the potential range, and again has a larger
differential capacitance at zero charge.

Overall, there are two different features of the theory presented
here against that of Ref. 60: (1) The screening length obtained here
is always smaller than that given by Eq. (24) because larger clus-
ters are explicitly accounted for. Therefore, the capacitance at zero
charge is always larger. (2) The breakdown of clusters and gel causes
the crowding regime to be reached at smaller potentials than that of
Eq. (24), which makes the “camel” shape less pronounced.

The two association constants investigated here can be con-
sidered to be at two different temperatures for the same IL, since
they are related to the free energy of an association through λ
= exp{−βΔ f+−}. Therefore, larger temperatures correspond to
smaller λ. As found in Ref. 60, we also observe a transition from a
camel to bell shape with increasing temperature, owing to the dis-
sociation of ions. Moreover, the capacitance at zero charge increases
with decreasing associations because there are more charge carriers
to screen the potential.

1. Comparison to experiments
In Ref. 49, it was found that both the cation and anion

in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide
[Emim][TFSI] have a functionality of 4 and that the volumes of each
ion are practically the same. This is perhaps as close as one can get
to the symmetric IL, which the new theory is applicable to. ILs are
typically composed of ions with very different volumes and unequal
functionalities.49 Further development of the presented formalism is
required to make predictions of asymmetric ILs.

In Ref. 86, Jitvisate and Seddon reported the experimental dif-
ferential capacitance curves of various ILs, including [Emim][TFSI].
The data from Ref. 86 for [Emim][TFSI] have been reproduced in
Fig. 12. A slight camel shape is found for [Emim][TFSI], with the
wings of the capacitance curve at large voltages being approximately
symmetric. It was noted in Ref. 86 that the differential capacitance
curve could be approximately fitted with Eq. (24) using α ≈ 0.07 and
γ ≈ 0.27. If γ is interpreted as the free ion fraction, there would have
been slightly less than 1/3 of free ions. This was also the conclu-
sion of Ref. 60, based on fitting the differential capacitance curve
obtained from molecular dynamics simulations. However, in Ref. 62,
the fraction of free ions of [Emim][TFSI] was found to be only
∼0.15 at room temperature, which is approximately half of that based
on Ref. 60.

In Fig. 12, the differential capacitance curve from the new the-
ory and the free ion theory (FIT), i.e., Eq. (24), is shown. The new
theory can reproduce the differential capacitance curve reasonably
well with λ = 0.6, as seen in Fig. 12. For λ = 0.6, the free ion fraction
is 0.12, which is close to that of Ref. 62. For the FIT with a free ion
fraction of γ = 0.12, the differential capacitance curve cannot repro-
duce experimental data well, being too “camel” shaped. The FIT
with the fitted value of γ = 0.27 from Jitvisate and Seddon86 is also
shown for comparison. Therefore, the new theory appears to be able
to rationalize the results62,86 that were not in quantitative agreement
before.

FIG. 12. Better agreement between experimental differential capacitance and the
new theory compared to the free ion theory (FIT), using an independently deter-
mined free ion fraction. Differential capacitance as a function of potential drop
across the EDL. The presented theory is shown by the solid red line and the theory
of Eq. (24) is shown by the dotted black line, using the independently determined
free ion fraction. A fitted γ = 0.27 for the FIT is also shown. The IL is taken to have
f = 4 and an association constant of λ = 0.6 (γ = 0.12), with T = 298 K, max-
imal concentration of 7.76M, α = 0.0786 and dielectric constant of ϵ = 1 (used
as a parameter to reduce the capacitance at zero charge). The experimental val-
ues for [Emim][TFSI] are shown by open circles and have been reproduced from
Ref. 86.

There are still a couple of free parameters, other than the free
ion fraction that was independently taken to be close to Ref. 62,
evaluated to obtain the differential capacitance curve in Fig. 12.
One of these parameters is α = 0.07, which was the value fitted by
Jitvisate and Seddon.86 Using this parameter and setting the dielec-
tric constant to the bulk value (for [Emim][TFSI] this is ϵ = 1286),
one obtains a capacitance at zero charge that is too large. Therefore,
to obtain a similar capacitance at zero charge, the dielectric constant
is set to ϵ = 1. As such value is unphysical (at least the polarizability
of electronic degrees of freedom ions would contribute the value of
2), such fitting of ϵ demonstrates a shortcoming of the simple, local
theory presented here and motivates further improvement. Note,
to permit a transparent comparison with Jitvisate and Seddon,86 a
Stern layer has not been included, which would have reduced the
capacitance at zero charge.

VI. DISCUSSION
A. Underscreening

The presented theory has implications for the interpretation
of the experiments in Refs. 35–42. Inverting the expression for the
screening length in terms of the association probability, we obtain

p =
(ℓκ)2

− 1
f − 1 + (ℓκ)2 . (25)

In experiments,35 the screening length multiplied by the inverse
Debye length is ℓκ ≈ 100 for ILs. Using this value yields an associ-
ation probability of 0.9997 for a functionality of 3. This association
probability produces ∼3 × 10−11 free ions, with the rest being gel,
which corresponds to a λ in excess of 1 × 106 and Δ f+− ≈ −14/β.
At large distances from the charged interface, we have found that
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it is actually the gel which screens the long-tail in electrode charge,
not the free ions. This could suggest that ILs are not dilute elec-
trolytes, but a gel that can screen electrode charge. In fact, Jurado
et al.41,42 found 1-hexyl-3-methyl-imidazolium ethylsulfate forms
lamellar-like structures on charged mica surfaces, (actually, specu-
lated about already in Ref. 81) which are conceptually similar to the
gel, albeit with more order.

Despite this, the capacitance at zero charge is (in this theory)
still fixed by the screening length ℓ, which means the underscreen-
ing paradox remains.45 Further development of the presented the-
ory, such as through taking into account the spatial structure of
clusters/gel or accounting for electrostatics beyond that investi-
gated here,30 could help gain further insight into these puzzling
experiments.

B. Overscreening
Ma et al.51 performed sophisticated classical density func-

tional calculations of a coarse-grained IL with varying degrees of
ion pairing, up to that suggested by Gebbie et al.36 It was noted
that the charged density was somewhat insensitive to the extent of
ion pairing, which suggested a link between ion pairing and over-
screening. This was further shown by Avni et al.,58 where a link
between clusters (ion pairs, triplets and quadruplets) and the lin-
earized overscreening theory of Bazant–Storey–Kornyshev (BSK)28

occurs in the long-wavelength limit. However, the BSK theory is
known to underestimate overscreening in ILs and the interpreta-
tion of it can be subtle,87–89 with some suggesting that short-range
cation–anion repulsion occurs. The alternating “copolymer” struc-
ture of the gel/large clusters is conceptually similar to extended
overscreening structures (bulk or in the EDL). If one accounts for
the spatial structure of larger clusters (than ion pairs, triplets and
quadruplets58) or the gel, extended overscreening could potentially
be obtained.

Here, for large association constants, we found that the EDL
structure has two regimes: one where electrode charge is screened
by free ions and another where it is screened by the gel. The free
ions accumulate near the interface, with the gel persisting toward
the bulk. Conceptually, this could be considered similar to the
overscreening–crowding transition.28

The reader should also bear in mind that the EDL theory pre-
sented here is a simple, local density approximation, which cannot
explicitly account for overscreening or the internal charge distri-
bution of clusters. However, while a spatial map between ions in
clusters, assumed to be Cayley trees here, and charge density does
not yet exist, Cayley trees have well-defined shells around an ion in
a cluster. One can loosely interpret the number of shells around an
ion with the distance from that ion, which can be utilized to further
establish the link between associations and overscreening.

Let us consider a cation at a “central” lattice site and examine
the probability of an anion being at any of the lattice sites n shells
away from the central cation, similar to the pair correlation func-
tion between cations and anions. The anion can be present on that
lattice site either by being linked to the central cation as part of the
same cluster, p, or by random, pr

−. There is also a possibility that a
cation could be present on that site by random, pr

+. Assuming that
unassociated species are uncorrelated, pr

− = pr
+ = pr , and taking into

account the incompressibility condition, we obtain pr
= (1 − p)/2.

Thus, the total probability of observing an anion one shell away is
(1 + p)/2. For the next shell, the probability that an anion is there
via a link to the central cation is exactly zero, as we require alternat-
ing associations. However, there is some probability that an anion
(or cation) is there by chance. In this case, the random probability
of an anion is (1 − p2

)/2, which is in fact the total probability of see-
ing an anion two shells away. Similarly, the analysis for three shells
away yields an anion probability of (1 + p3

)/2. Thus, we can gener-
alize the probability of seeing an anion n shells away from a central
cation to

P+− =
1 + pn

(−1)n+1

2
. (26)

In Fig. 13, P+− is plotted as a function of n, where we see
that the correlation probabilities display pronounced overscreening
when λ = 10, but only modest overscreening for λ = 1. Therefore,
pronounced overscreening could be more consistent with the gel
than clusters. While the developed theory does not spatially resolve
the clusters/gel, further development for the spatial distribution of
ions in clusters/gel could shed light on this connection.

In this spirit, one issue of the theory (which presumably needs
to be dealt with before this can be achieved) is how can extremely
large clusters screen the field if the latter decays on a significantly
shorter length scale than the clusters? This is a well-known issue for
theories of ILs with simple, local density approximations when no
associations are included. Taking into account associations increases
the screening length relative to the Debye length, but the clusters can
become extremely large in size. Therefore, the issue can remain for
finite clusters, and perhaps a finite cutoff needs to be introduced for
clusters which can contribute to the screening of electrode charge, as
is the case of the conductivity of ions in ILs.49,79 For the gel, it is con-
ceptually reasonable to think of its composition as locally changing,
just as an iceberg melts from its surface. For clusters, their individ-
ual structures cannot locally vary as they are discrete. In any case, the
theory should work for a large number of free ions and a small num-
ber of free ions, and it should act as an interpolation scheme between
these two regimes, with the largest error occurring only right at the
gel point (where there are significant numbers of very large clusters).

In addition to the above issue is the applicability of a local
density approximation when there are substantial variations of the

FIG. 13. Pronounced overscreening could occur as a result of the associations
between ions. The probability of an anion n shells away from a central cation. The
functionality was taken to be 3.
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charge density on a smaller length scale than the screening length,
i.e., the fact there is internal structure to the clusters. The pre-
sented theory cannot capture these short-scale variations, with it
only being able to deal with mean-field volume fractions of clus-
ters of different ranks and the gel. By developing theories that more
accurately account for spatial correlations from electrostatics and
non-electrostatic interactions, and that also account for the internal
structures of clusters, the overscreening structures and screening
lengths observed in surface force experiments could, perhaps, be
more accurately described.

C. Assumptions of the theory
The developed theory has some shortcomings, as just described,

but how well do we expect it to handle the averaged volume fractions
of each cluster? There could potentially be a number of issues with
the developed theory at a charged interface that could cause it to
break down. Some examples are as follows:

1. Do Cayley tree clusters exist near an interface?
2. Do specific interactions with the interface cause formation of

the compact layer?
3. Do ion pairs and aggregates rotate in the electrostatic fields?
4. Does the association free energy depend on the electrostatic

field?

For each of these questions, we shall state what is expected to happen
and how to confirm/falsify these expectations. Point 1 is the major
question to be answered, with the remaining points being minor if
1 is found to hold reasonably. In the description of 1, some details
of how to test the cluster distribution shall also be given. Over-
all, it is expected that the cluster distribution in the EDL does not
exactly hold, but we believe it is a sufficiently good approximation to
understand the qualitative behavior.

1. Cayley trees and cluster distribution in the EDL
We have shown that clusters are destroyed in favor of free ions

at large electrostatic potentials; therefore, the assumption of Cay-
ley tree clusters is not important at large fields. What needs to be
tested, however, is the low-voltage regime of overscreening. Close
to the interface, the presence of the interface could block asso-
ciation sites of the ions and drive the ions to form intra-cluster
loops. The assumption of Cayley trees applying in the EDL and the
assumed cluster distribution can only be confirmed from molecular
simulations.

In bulk ILs, McEldrew et al.49 found that the spatial distribution
function (SDF) of cations (anions) around anions (cations) has well-
defined “hot spots” (for where the concentration is over twice the
bulk value), where the ions of opposite sign prefer to reside. When
the cations and anions reside in each other’s hot spots, an association
was defined.49 This highly directional interaction between cations
and anions is a consequence of the complicated shapes of the ions
in ILs, and it is fundamental to the formation of Cayley tree clus-
ters,77 Spherical cutoffs to define associations or kinetic criteria62 are
not sufficient to test this approximation. Moreover, Lennard-Jones
hard sphere approximation to coarse-graining cannot be used, as the
full atomistic details are required to capture these complex interac-
tions. To see if Cayley tree clusters hold in the EDL, the association

criteria of McEldrew et al.49 must be utilized to calculate the clusters
in the EDL. This cluster distribution can be compared against the
presented theory to test how well the assumed cluster distribution
holds. Note that in the simulations, to obtain the volume fraction of
each cluster, the clusters will have to be assigned to bins. The size of
these bins should be larger than the average size of clusters, which
might become problematic right near the gel point when the cluster
sizes become very large.

The gel will also be evident from using the association criteria
of McEldrew et al.49 as a percolating ionic network throughout the
simulation. The theory predicts that the gel continuously exists, but
it changes composition as a function of the interface. Inspection of
the percolating ionic network should be able to reveal if there is an
equivalence between overscreening and gel screening. It would also
be interesting to test the connection between the associations and
overscreening in the bulk.

2. Specific interactions with the interface
The ions can interact with the interface “specifically” through

non-electrostatic interactions, which often causes one type of ion to
accumulate at the interface without an applied voltage, owing to the
specific interaction of one type of ion being more favorable than the
other. These specific interactions with the surface are not accounted
for in the presented theory, and they will further contribute to
breaking the assumed cluster distribution. Therefore, the presented
theory might only work well for the diffuse part of the double
layer, not the compact layer of ions that are in contact with the
interface.

In a similar spirit to the presented theory, several theories to
describe the voltage dependence of the compact layer with clusters
were developed by Damaskin–Frumkin–Parsons.90,91 In those the-
ories, the equilibrium between the free states and clustered states
were self-consistently determined in an electrostatic potential, which
gave rise to a voltage dependence of the differential capacitance
of the compact layer. To account for specific interactions with
the interface, one approach could be to have an additional equi-
librium between the compact layer, described by the theories of
Damaskin–Frumkin–Parsons,90,91 and the diffuse part of the EDL.

Again, molecular dynamics simulations can be utilized to test
if specific interactions cause a breakdown of the cluster distribution,
using the cluster criteria of McEldrew et al.49

3. Orientation of clusters
As overscreening is a spatially ordered structure, it is expected

that clusters do orient in an electrostatic field. However, we do not
expect them to behave as fluctuating Langevin dipoles. It has been
shown in Refs. 49 and 53 that the lifetime of associations is of
the order of ∼1–10 ps, which is presumably too short for the rota-
tion of an ion pair or cluster. Therefore, the orientation of clusters
must be a weaker contribution than fluctuating Langevin dipoles. In
Ref. 92, ion pairs (which were not permitted to dissociate in the EDL)
were treated as Langevin dipoles, where an additional bump in con-
centrations of ion pairs and a higher propensity for a “bell”-shaped
differential capacitance curve because of dielectric saturation were
found. While ion pairs might not behave as fluctuating Langevin
dipoles, the large clusters and gel could have vibrational modes that
contribute to the dielectric screening of the electrolyte. This could
be introduced in a similar way to Ref. 92, as some effective dielectric
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constant that is saturated to lower values in the crowding regime.
Thus, it is expected that this issue is not substantial for the averaged
volume fractions, but it could cause a breakdown of the assumed
cluster distribution, as outlined in the supplementary material. The
issue of orientation of clusters can again be confirmed by molecu-
lar simulations, provided the cluster distribution can be calculated
as described in the previous point.

4. Field dependent binding
Related to the previous points, if an ion pair is oriented along

the decay of the electrostatic field, the ion pair will presumably
be stretched. This could be captured through an electrostatic field-
dependent binding energy and, therefore, association constant. We
would expect the binding energy to decrease with increasing elec-
trostatic fields. This will cause the associations to break down more
than shown here. The presented theory could be considered to over-
estimate the extent of clusters in the EDL, then. Again, this issue can
be confirmed from computing the cluster distribution in the EDL
and comparing it against the presented theory.

VII. CONCLUSION
In summary, we have developed a theory for the EDL in ILs that

accounts for thermoreversible associations, based on that of McEl-
drew et al. in bulk ILs. The developed theory is constructed from
assuming that the bulk cluster distribution applies in the EDL, but
with modulated volume fractions of cations and anions, which is
coupled to the Poisson equation through a Boltzmann closure rela-
tion of the free ions. This theory was shown to recover the expected
linear response behavior and the large potential limits. Therefore, it
should serve as a qualitative description for the EDL of an IL with
thermoreversible associations. For strongly associating ILs, the free
ions crowd near the interface; but far from the interface, the gel
screens the electrode charge. The differential capacitance was found
to have a larger capacitance at zero charge than free ion theories,
from the fact that the clusters can also screen, and the transition to
“camel” shape occurs at smaller free ion fractions than models based
on free ions.

ILs provided an extremely useful test ground to develop the
theory presented here, since ILs are the simplest possible super-
concentrated electrolytes. It is expected that the presented theory can
describe coarse-grained values of the volume fractions of each clus-
ter in the EDL of ILs previously studied by McEldrew et al., and other
similar ILs from the combinations of the different cations and anions
studied therein. The aggregation and gelation theory of McEldrew
et al. has also been developed for water-in-salt electrolytes and salt-
in-ionic liquids, so far. Development of the EDL theory for these
systems would be relevant for engineering the interfacial behavior
of such electrolytes, which is crucial for their performance in energy
storage technologies. Moreover, investigating the consequences of
this theory for the electrokinetic behavior could potentially yield new
predictions to confirm the presented theory.

SUPPLEMENTARY MATERIAL

In the supplementary material, further details of the bulk
cluster distribution are given, the bulk–electrical double layer

equilibrium is established and the approximations required are out-
lined, the role of gel terms in the closure relation is outlined, and
finally a step-by-step guide of how to implement the equations
numerically is given.
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NOMENCLATURE
List of variables and parameters. Top panel—quantities used

for the cluster distribution. A ∗ is used to denote values at the gel
point. Bottom panel—quantities used in the EDL. A bar is used over
any of the variables in the top panel if they are in the EDL.

Top panel

N lm Number of lm clusters
Ngel

i Number of species i in gel
fi Functionality of species i
vi Volume of species i
Ω Number of lattice sites
β Inverse thermal energy
clm Concentration of cluster (number per lattice site)
ϕlm Volume fraction of an lm cluster
ϕi Total volume fraction of species i
cgel

i Concentration of species i in gel
ϕsol

i Volume fraction of species i in sol
ϕgel

i Volume fraction of species i in gel
wsol

i Fraction of species in the sol
w

gel
i Fraction of species in the gel

Δlm Free energy of formation of a cluster of a rank lm
Δgel

i Free energy change of species i associating to the gel
Δ f+− Free energy of an association
W lm Combinatorial enumeration
Δu+− Association energy
Δs+− Entropy of an association
λ Association constant
ζ Number of anion–cation associations
pij Association probabilities
psol

ij Association probabilities in the sol

Bottom panel

u Volts in units of thermal voltage
α Short-range correlation parameter
κ Inverse Debye length
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ℓ Screening length
e Elementary charge
ϵϵ0 Dielectric constant
δϕ̄ Perturbation in volume fractions
δp̄ Perturbation in probabilities
δϕ̄ sol Perturbation in sol volume fractions
δp̄ sol Perturbation in sol probabilities
C Differential capacitance
C0 Debye capacitance
σ̃ Dimensionless surface charge density
u0 Potential drop across EDL
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