77 research outputs found

    Principles of Modular Tumor Therapy

    Get PDF
    Nature is interwoven with communication and is represented and reproduced through communication acts. The central question is how may multimodal modularly acting and less toxic therapy approaches, defined as modular therapies, induce an objective response or even a continuous complete remission, although single stimulatory or inhibitingly acting drugs neither exert mono-activity in the respective metastatic tumor type nor are they directed to potentially ‘tumor-specific’ targets. Modularity in the present context is a formal pragmatic communicative systems concept, describing the degree to which systems objects (cells, pathways etc.) may be communicatively separated in a virtual continuum, and recombined and rededicated to alter validity and denotation of communication processes in the tumor. Intentional knowledge, discharging in reductionist therapies, disregards the risk-absorbing background knowledge of the tumor’s living world including the holistic communication processes, which we rely on in every therapy. At first, this knowledge constitutes the validity of informative intercellular processes, which is the prerequisite for therapeutic success. All communication-relevant steps, such as intentions, understandings, and the appreciation of messages, may be modulated simultaneously, even with a high grade of specificity. Thus, modular therapy approaches including risk-absorbing and validity-modifying background knowledge may overcome reductionist idealizations. Modular therapies show modular events assembled by the tumor’s living world as an additional evolution-constituting dimension. This way, modular knowledge may be acquired from the environment, either incidentally or constitutionally. The new communicatively defined modular coherency of environment, i.e. the tumor-associated microenvironment, and tumor cells open novel ways for the scientific community in ‘translational medicine’

    Anchored Design of Protein-Protein Interfaces

    Get PDF
    Few existing protein-protein interface design methods allow for extensive backbone rearrangements during the design process. There is also a dichotomy between redesign methods, which take advantage of the native interface, and de novo methods, which produce novel binders.Here, we propose a new method for designing novel protein reagents that combines advantages of redesign and de novo methods and allows for extensive backbone motion. This method requires a bound structure of a target and one of its natural binding partners. A key interaction in this interface, the anchor, is computationally grafted out of the partner and into a surface loop on the design scaffold. The design scaffold's surface is then redesigned with backbone flexibility to create a new binding partner for the target. Careful choice of a scaffold will bring experimentally desirable characteristics into the new complex. The use of an anchor both expedites the design process and ensures that binding proceeds against a known location on the target. The use of surface loops on the scaffold allows for flexible-backbone redesign to properly search conformational space.This protocol was implemented within the Rosetta3 software suite. To demonstrate and evaluate this protocol, we have developed a benchmarking set of structures from the PDB with loop-mediated interfaces. This protocol can recover the correct loop-mediated interface in 15 out of 16 tested structures, using only a single residue as an anchor

    The Contribution of Coevolving Residues to the Stability of KDO8P Synthase

    Get PDF
    The evolutionary tree of 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial enzyme that catalyzes a key step in the biosynthesis of bacterial endotoxin, is evenly divided between metal and non-metal forms, both having similar structures, but diverging in various degrees in amino acid sequence. Mutagenesis, crystallographic and computational studies have established that only a few residues determine whether or not KDO8PS requires a metal for function. The remaining divergence in the amino acid sequence of KDO8PSs is apparently unrelated to the underlying catalytic mechanism.The multiple alignment of all known KDO8PS sequences reveals that several residue pairs coevolved, an indication of their possible linkage to a structural constraint. In this study we investigated by computational means the contribution of coevolving residues to the stability of KDO8PS. We found that about 1/4 of all strongly coevolving pairs probably originated from cycles of mutation (decreasing stability) and suppression (restoring it), while the remaining pairs are best explained by a succession of neutral or nearly neutral covarions.Both sequence conservation and coevolution are involved in the preservation of the core structure of KDO8PS, but the contribution of coevolving residues is, in proportion, smaller. This is because small stability gains or losses associated with selection of certain residues in some regions of the stability landscape of KDO8PS are easily offset by a large number of possible changes in other regions. While this effect increases the tolerance of KDO8PS to deleterious mutations, it also decreases the probability that specific pairs of residues could have a strong contribution to the thermodynamic stability of the protein

    Mating and aggregative behaviors among basal hexapods in the Early Cretaceous

    Get PDF
    Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtailsÐSymphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus SaÂnchez-GarcõÂa & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water's surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal

    Surgical Management of Penetrating Brain Injuries

    No full text

    Guidelines and recommendations in neurotrauma

    No full text

    Guidelines and recommendations in neurotrauma

    No full text
    corecore