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Abstract In this paper, a modified Eddington-inspired-
Born-Infeld (EiBI) theory with a pure trace term gμνR being
added to the determinantal action is analysed from a cos-
mological point of view. It corresponds to the most general
action constructed from a rank two tensor that contains up
to first order terms in curvature. This term can equally be
seen as a conformal factor multiplying the metric gμν . This
very interesting type of amendment has not been consid-
ered within the Palatini formalism despite the large amount
of works on the Born-Infeld-inspired theory of gravity. This
model can provide smooth bouncing solutions which were
not allowed in the EiBI model for the same EiBI coupling.
Most interestingly, for a radiation filled universe there are
some regions of the parameter space that can naturally lead
to a de Sitter inflationary stage without the need of any exotic
matter field. Finally, in this model we discover a new type
of cosmic “quasi-sudden” singularity, where the cosmic time
derivative of the Hubble rate becomes very large but finite at
a finite cosmic time.

1 Introduction

Undeniably, Einstein’s theory of general relativity (GR) has
been an extremely successful theory for around a century [1].
However, the theory is expected to break down at some points
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at very high energies where quantum effects are expected to
become crucial, such as in the past expansion of the Universe
where GR predicts a big bang singularity [2]. This is one of
the motivations for looking for possible modified theories of
gravity, which are hoped to not only be able to preserve the
huge achievements of GR, but also to shed some light on
smoothing the singularities predicted in GR. Such theories
could be seen as effective/phenomenological approaches of
a more fundamental quantum theory of gravity.

In 1934 Born and Infeld proposed a non-linear action for
classical electrodynamics, which is characterised by its grand
success in solving the divergence of the self-energy of point-
like charges [3]. This action for electromagnetism has an
elegant determinantal structure which reads:

SBI = 1

κ

∫
d4x

√|gμν + κFμν |, (1.1)

with gμν andFμν being the metric tensor and the electromag-
netic field strength. Here κ is a dimensional constant. Note
that the Born-Infeld action (1.1) recovers Maxwell action for
small amplitudes.

Since the proposal of the Born-Infeld action, modified
theories of gravity with a Born-Infeld-inspired action, initi-
ated by the pioneering work of Deser and Gibbons [4], have
received much attention; c.f. Refs. [5–11]. These theories of
gravity not only maintain the properties of GR for small cur-
vatures, but provide various interesting deviations from GR
at high curvature regimes. Most of these works start with a
general gravitational action of the form

Sdet = 1

κ

∫
d4x

√
|gμν + κGμν(R, Rαβ, Rμναβ)|, (1.2)
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where Gμν represents a linear Ricci term Rμν , plus higher
order curvature terms containing R, Rμν , and Rμναβ . Rather
than amending the higher curvature terms in Gμν , we can
also modify the action by multiplying the metric term in the
determinant by a factor 1+α1R, where α1 is a constant with
length square dimensions. This approach does not lead to a
violation of the requirements in the low curvature limit, i.e.
we can still recover GR at low energies. Actually, a gravita-
tional action with this pure trace term has been considered
in Ref. [5] within a pure metric formalism. The theory thus
inevitably suffers from the presence of troublesome fourth
order derivatives in the field equations or ghost instabilities
[4].

In order to keep the theory free from aforementioned
problems, alternative theories formulated within the Palatini
formalism and teleparallel representation have been widely
studied in Refs. [10–18]. For example, a theory constructed
upon the Palatini approach, which is dubbed Eddington-
inspired-Born-Infeld theory (EiBI) (see Refs. [17,18]), has
recently attracted a lot of attention and has been studied from
both astrophysical and cosmological points of view [19–52].
The EiBI theory is shown to be able to cure the big bang sin-
gularity for a radiation dominated universe through a loiter-
ing effect1 or a bounce2 in the past, with the coupling constant
κ being positive or negative, respectively. The ability of the
theory to smooth other cosmological singularities in a phan-
tom dominated universe was also studied in Refs. [21,22].
Interestingly, in Refs. [39–41] the authors showed that the
bouncing solutions for negative κ are robust against the
changes of the Lagrangian through an additional f (R) term
or some functional extensions (see as well Ref. [53] for
another generalized gravitational theory related to massive
gravity and Ref. [54] for the tensorial perturbations of a fur-
ther generalized gravitational theory within the Palatini for-
malism.). However, it should be stressed that the amendments
through the addition of a pure trace term to the determinantal
action have never been considered so far. Besides, the EiBI
theory with a negative coupling constant κ was also shown to
suffer from instability problems due to the imaginary effec-
tive sound speed [34].

On the other hand, a recently proposed determinantal
gravity formulated within the teleparallel representation was
shown to be able to cure the big bang singularity in the past
evolution of the Universe through a de Sitter inflationary
phase [16]. Considering the widest generalization, the author
added a pure trace term into the Lagrangian of the form of

1 The Universe starts its evolution with a minimum size and at an infinite
cosmic time in the past, before it enters the standard GR expansion
[17,18].
2 A bouncing universe is a universe with a minimum or a maximum
scale factor such that after a contracting phase, an expanding phase
happens or the other way around. In this kind of model, the big bang is
substituted by a bounce.

gμνT , where T is the Weitzenböck invariant [55]. In our
previous work, we exhibited that this theory contains cos-
mological singularities for some parameters of the model,
including the emergence of some cosmological singularities
from purely geometrical effects (without the need of exotic
matter) [49].

As far as we know, the gravitational actions with a pure
trace term added to the Born-Infeld determinantal structure
have never been considered within the Palatini approach in
the literature. Furthermore, we expect the emergence of inter-
esting cosmological solutions with the addition of a pure
trace term because it is expected in the teleparallel version.
Based on these motivations, in this work we will consider
a modified EiBI theory with a pure trace term added to the
determinantal action, and analyse its cosmological implica-
tions. For simplicity, in this work we will assume a homoge-
neous and isotropic universe filled with a perfect fluid with
a constant equation of state. Because the field equations are
complicated, we will follow a method similar to that used in
Ref. [39] to demonstrate the results graphically.

In this paper, we will follow Ref. [56] to characterize the
cosmological singularities by the behavior of the Hubble rate
and its cosmic time derivative at the singular event:3

• A big rip singularity takes place at a finite cosmic time
with an infinite scale factor, where the Hubble parameter
and its cosmic time derivative diverge [60–67].

• A sudden singularity takes place at a finite cosmic time
with a finite scale factor, where the Hubble parameter
remains finite but its cosmic time derivative diverges [56,
68,69].

• A big freeze singularity takes place at a finite cosmic time
with a finite scale factor, where the Hubble parameter and
its cosmic time derivative diverge [56,70–73].

• A type IV singularity takes place at a finite cosmic time
with a finite scale factor, where the Hubble parameter and
its cosmic time derivative remain finite, but higher cosmic
time derivatives of the Hubble parameter still diverge [56,
70,72–75].

• A little rip event takes place at an infinite cosmic time
with an infinite scale factor, where the Hubble rate and
its cosmic time derivative diverge [56,76–81].

• A little sibling of the big rip takes place at an infinite
cosmic time with an infinite scale factor, where the Hub-
ble rate diverges, but its cosmic time derivative remains
finite [82,83].

Our results are clearly shown in Table 1 where we com-
pare them with the original EiBI model [17,18]. As can be
seen the model we are proposing can provide smooth bounc-

3 For an alternative classification of cosmological singularities see
Refs. [57–59].
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Table 1 This table summarizes how the big bang singularity in GR is
altered in the modified EiBI theory for a radiation dominated universe.
If κ < 0, the big bang is substituted by a bounce except for the regions
of the parameter space 0 < β ≤ 1/4 where the big bang is still present.
If κ > 0, the big bang singularity can be altered by a loitering effect,

a bounce, what we named a quasi-sudden singularity, or a big freeze
singularity in the past. However, for 1/4 ≤ β < 1, the big bang singu-
larity exists. Furthermore, the big bang singularity may be followed by
a de Sitter inflationary stage for β � 1

κ > 0 κ < 0

β < 0
β = 0 past loitering effect bounce

(EiBI theory)
0 < β < β� bounce

β = β� past quasi-sudden singularity
β� < β < 1/4 past big freeze singularity big bang singularity

β = 1/4
Palatini R2 theory big bang singularity

1/4 < β < 1
β 1 big bang singularity+de Sitter bounce
β ≥ 1 past loitering effect

ing solutions which were not allowed in the EiBI model for
the same EiBI coupling (κ > 0). Most interestingly, for a
radiation filled universe there are some regions of the param-
eter space that can naturally lead to a de Sitter inflationary
stage without the need of any exotic matter field. Finally, in
this model we discover a new type of cosmic “quasi-sudden”
singularity, where the cosmic time derivative of the Hubble
rate becomes very large but finite at a finite cosmic time.

This paper is outlined as follows. In section II, we briefly
introduce the basis of the modified EiBI theory with the addi-
tion of a pure trace term, including its action, field equations,
and the low curvature limits of the theory. In section III, we
assume a homogeneous and isotropic universe filled with a
perfect fluid with a constant equation of state, then follow a
similar approach to that used in Ref. [39] to derive a paramet-
ric Friedmann equation. In section IV, we exhibit the evolu-
tion of the Universe by graphically showing the Hubble rate
as a function of the energy density under different assump-
tions of the parameters characterising the theory. To analyse
the evolution of the Universe at the very early time, we then
confine ourselves to a radiation dominated universe in our
analysis of the modified EiBI theory. We finally present our
conclusions in section V.

2 Proposed model: action and field equations

As mentioned in the introduction, in this paper we will add
a pure trace term, which takes the form of gμνR, to the EiBI
determinantal Lagrangian. This term can equally be seen as a
conformal factor multiplying the metric gμν . Therefore, the
action of this generalized EiBI theory is

S = 1

κ

∫
d4x

[√|gμν + κFμν | − λ
√−g

]
+ Sm, (2.1)

where

Fμν = αRμν(�) + βgμνR. (2.2)

The theory is formulated within the Palatini formalism, in
which the metric gμν and the connection � are treated as
independent variables. In addition, Rμν(�) is chosen to be
the symmetric part of the Ricci tensor and the connection is
also assumed to be torsionless. Note that g is the determinant
of the metric and Sm stands for the matter Lagrangian, where
matter is assumed to be coupled covariantly to the metric g
only. α, β and λ are dimensionless constants. The parameter
κ is a constant with inverse dimensions to that of a cosmolog-
ical constant (in this paper, we will work with Planck units
8πG = 1 and set the speed of light to c = 1).

In the low energy limit (κ → 0), the gravitational action
(2.1) becomes

Sg ≈ 1

2

∫
d4x

√−g
[
(α + 4β)R − 2	

+
(

1

4
α2 + αβ + 2β2

)
κR2 − 1

2
α2κRμν R

μν + O3(R)
]
,

(2.3)

where the effective cosmological constant is defined by 	 ≡
(λ − 1)/κ . Therefore, the dimensionless constants α and β

should satisfy:

α + 4β = 1 (2.4)

to ensure the recovering of Einstein GR at the low curvature
limit. Moreover, it can be easily seen that the EiBI theory is
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regained when α = 1 and β = 0. On the other hand, this
theory becomes an R2 theory with its gravitational action
part being

Sg|α=0 = 1

2

∫
d4x

√−g
(
R + κ

8
R2 − 2	

)
, (2.5)

when α = 0 and β = 1/4 [84]. Note that this constitutes
the sole of f (R)-like action that can be derived from the
determinantal structure, which is also valid for f (T )-like
action in the teleparallel representation [16]. Therefore, the
dimensionless constants α and β in this theory can be used to
quantify the extent of the interpolation between the Palatini
R2 theory and the EiBI theory.

Actually, one can also add the so called zeroth order curva-
ture term; i.e., γ gμν , to the determinant based on the struc-
tural completeness. However, This additional term can be
rescaled by a conformal transformation gμν → (1 + γ )gμν

and then can be absorbed into the cosmological constant term.
In this sense this additional term is not expected to affect our
results significantly, especially at the high energy regime in
which the influence caused by high curvature terms is domi-
nant. In fact, one can easily see from the gravitational action
that the higher order curvatures term will dominate over the
zeroth order term when curvature gets large. Therefore, we
will omit this possible additional term in this work.

Within the Palatini approach we are assuming here, we
have to vary the action (2.1) with respect to the metric and
the connection independently to derive the complete field
equations. After varying the action with respect to gμν , we
derive the first field equation

√−q√−g
qμν(1 + κβR) − λgμν

−
√−q√−g

κβqαβgαβg
μρgνσ Rρσ = −κTμν, (2.6)

where qμν ≡ gμν + κFμν and qμν is the inverse of qμν . Tμν

stands for the energy momentum tensor. Because the matter
is assumed to be coupled covariantly to the metric g only, the
energy momentum tensor is conserved like in GR [17,18].

The second field equation can be obtained by varying the
action (2.1) with respect to the connection

∇ν

[√−q(αqμν + βqαβgαβg
μν)

]
= 0. (2.7)

Note that the covariant derivative ∇ν is defined through the
connection �.

3 Modified EiBI gravity: a parametric Friedmann
equation

To analyse the behavior of the cosmological solutions in the
generalized theory defined in Eqs. (2.1) and (2.2), we follow
an approach similar to the one proposed in Ref. [39] to our
model. More precisely, we will rewrite the field equations in
an algebraic form and express the quantities of interest using
a single variable x , then we will represent the behavior of the
cosmological solutions graphically. We assume q̂ and q̂−1

denoting qμν and its inverse qμν , respectively. From now on,
a hat will denote a tensor without making explicit reference
to the tensor components. We further define ̂ = ĝ−1q̂ and
̂−1 = q̂−1ĝ to rewrite the first field equation (2.6) as follows

|̂| 1
2 ̂−1(1 + κβR) − |̂| 1

2 Tr(̂−1)κβ( ˆg−1R) − λ Î = −κ T̂ ,

(3.1)

where ( ˆg−1R) ≡ gμαRαν(�) and T̂ ≡ Tμαgαν . Note that Î
is the identity matrix and Tr Â denotes the trace of a matrix
Â.

After taking a trace of both sides of Eq. (3.1), we get

|̂| 1
2 Tr(̂−1) = 4λ − κT . (3.2)

Moreover, according to the definition of q̂ and ̂ and Eq. (2.4)
we have

Tr̂ = 4(1 + κβR) + καR = 4 + κR, (3.3)

( ˆg−1R) = ̂ − (1 + κβR) Î

ακ
. (3.4)

Note that Eq. (3.4) is valid only for α �= 0. Combining
Eqs. (3.1), (3.2), (3.3) and (3.4), and after some algebra, we
obtain

α(α + βTr̂)

Tr(̂−1)
̂−1 − β̂ + αT̂

T̄
+

[
β(α + βTr̂) − αλ

κ T̄

]
Î = 0,

(3.5)

where T̄ ≡ 4λ/κ − T .
To analyse the solutions within a cosmological scale; i.e.,

we assume the cosmological principle, we first assume that
the Universe is homogeneous and isotropic at large scale and
that it is filled with an effective perfect fluid with energy
density ρ and pressure p. Then ̂ becomes a diagonal tensor
with

0
0 ≡ ω1,

i
j ≡ ω2δ

i
j . (3.6)

Therefore, the non-vanishing components of Eq. (3.5) read,

α[α + β(ω1 + 3ω2)]ω2

ω2 + 3ω1
− βω1 − αρ

T̄
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= αλ

κ T̄
− β[α + β(ω1 + 3ω2)], (3.7)

and

α[α + β(ω1 + 3ω2)]ω1

ω2 + 3ω1
− βω2 + αp

T̄

= αλ

κ T̄
− β[α + β(ω1 + 3ω2)]. (3.8)

Next, we introduce a constant equation of state w for the
perfect fluid, i.e. it satisfies p = wρ. Combining Eqs. (3.7)
and (3.8), the energy density as functions of ω1 and ω2 can
be written as:

κρ = 4λX (ω2 − ω1)

α(1 + w) − X (ω2 − ω1)(1 − 3w)
, (3.9)

where

X = α[α + β(ω1 + 3ω2)]
ω2 + 3ω1

+ β. (3.10)

Then, we introduce a dimensionless parameter x , which
satisfies

ω1 = x3|̂| 1
4

ω2 = |̂| 1
4

x
. (3.11)

Therefore, according to Eq. (3.3), we have

x3 + 3

x
= 4z, (3.12)

where 4z = (4 + κR)/|̂| 1
4 .

Next, by adding Eqs. (3.8) to (3.7) after being multiplied
by w, the terms involving ρ are cancelled out, and an alge-

braic equation for x and |̂| 1
4 is obtained:

α(α + 4βz|̂| 1
4 )

1 + 3x4 (w + x4) − β

(
wx3 + 1

x

)
|̂| 1

4

+β(α + 4βz|̂| 1
4 )(w + 1) = αλ(w + 1)x3

(1 + 3x4)|̂| 1
4

. (3.13)

After some rearrangements we derive a quadratic equation

for |̂| 1
4 which reads

R1|̂| 1
2 + R2|̂| 1

4 + R3 = 0, (3.14)

where

R1 = 4αβz(w + x4) − β

(
wx3 + 1

x

)
(1 + 3x4)

+ 4β2z(w + 1)(1 + 3x4), (3.15)

R2 = α2(w + x4) + αβ(w + 1)(1 + 3x4), (3.16)

R3 = −αλ(w + 1)x3. (3.17)

The solution to this quadratic equation, expressed in terms
of x , reads

|̂| 1
4 =

⎧⎨
⎩

−R2±
√

R2
2−4R1R3

2R1
, R1 �= 0

− R3
R2

, R1 = 0.
(3.18)

In addition, after factoring R1(x) we find that if β = 0 (EiBI
limit) or w = 1/3 (radiation domination), R1(x) vanishes,
which means the second equation in Eq. (3.18) is valid. Fur-
thermore, it should be stressed that the approach mentioned
above can not be applied to the case in which α = 0 [see
Eq. (3.4)]. Actually, x is fixed to be x = 1 in this case, thus
x is no longer a changing variable. However, this fact is not
a real problem because one can easily derive the cosmolog-
ical solutions for a pure R2 action without the need of the
approach we are following [84].

We have now derived the expression of the energy den-
sity as a function of x in Eq. (3.9). If we can further express
the Hubble rate as a function of x , the graphical relation-
ship between the Hubble rate and the energy density can be
completed.

As was already assumed at the beginning of this section,
we focus on a cosmological symmetry and choose a spatially
flat Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2), (3.19)

where t is the cosmic time and a(t) is the scale factor.
We then define two tensors �̂ andhμν such that

√−q�̂qμν

= √−hhμν , and �̂ = α Î + βTr(̂−1)̂. Note that hμν

denotes the inverse of hμν . According to the field equation
(2.7), the tensor hμν is the auxiliary metric which is compat-
ible with the physical connection of this theory. After some
calculations, we obtain |q||�| = |h|. Inserting it back we

have hμν = �̂q̂−1/|�̂|1/2
, and hμν = |�̂|1/2 ĝ̂�̂−1. The

non-vanishing components of �̂ and hμν read

�0
0 ≡ σ1 = α + β(1 + 3x4),

�i
j ≡ σ2δ

i
j =

[
α + β(

1

x4 + 3)
]
δij , (3.20)

and

h00 = −
√

σ2
3

σ1
ω1 ≡ −h1,

hi j = √
σ1σ2ω2δi j a

2 ≡ h2δi j a
2. (3.21)

Once we have obtained the components of the auxiliary
metric hμν which is compatible with the physical connection
of the theory, we can derive the components of the connection
and the Ricci tensor. After some lengthy calculations, we
obtain
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R00 + h1

h2a2 Ri jδ
i j = 3

2

( ḣ2

h2
+ 2H

)2

= 3

2

[
2 − 3

h2

dh2

dρ
ρ(1 + w)

]2
H2,

(3.22)

where H = ȧ/a is the Hubble rate and the dot denotes the
cosmic time derivative. Note that the conservation equation
ρ̇ = −3H(ρ + p) has been applied in the above equation.
Finally, we arrive at the expression of H2 in terms of the
variable x :

1

2
κH2

= α + |̂| 1
4 (4βz − x3) + 3σ2

σ1
[|̂| 1

4 (x3 − 4βzx4) − αx4]
3α

[
2 − 3

h2

dh2
dρ

ρ(1 + w)
]2 ,

(3.23)

In the next section, we will combine Eqs. (3.9) and (3.23)
together with the definitions (3.6), (3.12), (3.20) and (3.21)
to analyse the past/future asymptotic behavior of a FLRW
universe in this type of model when filled with a perfect
fluid with constant w. Eqs. (3.9) and (3.23) correspond to a
parametric Friedmann equation being x the free parameter.

4 The Hubble rate in an expanding universe

In the previous section, we derive the expressions of ρ

[Eq. (3.9)] and H2 [Eq. (3.23)] as functions of a single vari-
able x . Therefore, we can graphically obtain the represen-
tations of κH2 as a function of κρ to exhibit the behaviors
of the cosmological solutions of interest. From now on, we
will assume a vanishing cosmological constant to simplify
the analysis, that is, we assume λ = 1.

4.1 The original EiBI theory: β = 0

As a first glance, we consider the original EiBI theory in
which β = 0 and α = 1. The representations of κH2 as
a function of κρ are shown in Fig. 1. One can see that the
evolution of the energy density terminates at a bounce where
H2 = 0 and dH/dρ �= 0 at |κρ| = 1 for κ < 0. This
bouncing solution is robust against the change of the equa-
tion of state w. However, if κ > 0 it can be seen that the
behavior of the Hubble parameter is highly sensitive to the
choice of w. There are loitering solutions where H2 → 0 and
dH/dρ → 0 at κρ = 1/w for w > 0, and divergent solu-
tions for w ≤ 0. Furthermore, it can also be easily seen that
the behaviors of the different curves focus around H2 = ρ/3
when ρ ≈ 0. This property is not a surprise because of the
prior criteria shown in Eq. (2.4), and it can be affirmed in all
results shown in the rest of this paper; i.e. we recover GR at

0.3
0.6
0.9

H2

2 1 1 2 3 4 5
0.3

Fig. 1 Graphical representation of κH2 as a function of κρ in the EiBI
theory in which β = 0. Different curves represent different equation of
state w. The solid blue, red, green, and dashed blue curves show the
plots for w = 1/3, 1/5, 0, and w = −1/3, respectively

3 2 1 1 2 3 4

1

0.5

0.3
H2

Fig. 2 Graphical representation of κH2 as a function of κρ for a radia-
tion dominated universe (w = 1/3).Different curves represent different
values of β. The solid blue, red, and dashed blue curves show the plots
for β = 0, 10−3, and 10−2, respectively

low energies. Note that the results summarized in this sub-
section are compatible with those concluded in the literatures
[17–19].

4.2 Radiation dominated universe

In this subsection, we analyse if the original loitering behav-
iors and the bouncing solutions within the EiBI theory can
be altered with the addition of a pure trace term gμνR to
the determinantal Lagrangian, i.e., β �= 0, for a radiation
dominated universe. The analysis could be easily extended
to other equation of state but for simplicity we stick to a
radiation dominated universe.

4.2.1 β � 0

We first consider the region in which β is slightly larger
than zero. One should be reminded that in Refs. [39–41] the
authors concluded that the bouncing solutions in the EiBI
theory for negative κ are robust against the amendment to
the EiBI action through an additional f (R) term or some
functional extents. However, the situations are different in our
model. One can see from Fig. 2 that the bouncing solutions for
negative κ are quite sensitive to the increase of β from zero by
even a small amount. More precisely, the asymptotic behavior
of H2 at large ρ is H2 ∝ ρ. This implies the occurrence of
a big bang singularity in the past.
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Fig. 3 Graphical representation of κH2 as a function of κρ for a radia-
tion dominated universe (w = 1/3).Different curves represent different
values of β. The solid blue, red, dashed blue, dotted blue, and dotted red
curves show the representations for β = 1/10, 3/25, 7/50, 1/5, and
21/100, respectively. The straight line crossing the origin represents
H2 = ρ/3, which is the solution within R + R2 gravity (β = 1/4)
for a radiation dominated universe. Note that the vertical lines (from
left to right) indicate the maximum values of the energy density for
β = 1/5 and 21/100, where the Hubble rate blows up, respectively.
These singular events correspond to a big freeze singularity in the past

On the other hand, for positive κ the loitering effect in
the EiBI theory becomes a bounce in this model, in which
H2 ∝ δρ ≡ ρ − ρmax with ρmax being the maximum energy
density at the bounce. This gives a much regular behavior as
compared with the asymptotic past behavior for κ < 0.

4.2.2 0 < β ≤ 1/4

As the value of β increases and gets closer to β ≈ 1/4, one
can see from Fig. 3 that the behaviors of the big bang solu-
tions gradually converge to those within the R + R2 gravity
(β = 1/4), that is, H2 = ρ/3, for negative κ . On the other
hand, if κ > 0 the loitering behaviors within the EiBI theory
can be substituted by other interesting cosmological solu-
tions. For example, we find that for β = 1/10 and β = 3/25,
the asymptotic behaviors of H2, when ρ approaches its max-
imum value ρmax, become

H2 ∝ δρ, (4.1)

where δρ = ρ − ρmax. Combining it with the conservation
equation ρ ∝ a−4, one can see that this event corresponds to
a bounce in the past.

Furthermore, we have also found that the absolute value
of dH2/dρ, which is proportional to Ḣ in this model as the
energy momentum tensor is conserved, is a growing function
of β. As β approaches β ≈ β� = 7/50, |dH2/dρ| gets very
large at a finite past cosmic time. Therefore, this singular
event can be regarded as a quasi-sudden singularity in the

1 1 2 3 4

0.3

0.3
H2

Fig. 4 Graphical representation of κH2 as a function of κρ for a radia-
tion dominated universe (w = 1/3).Different curves represent different
β. The solid blue, red, and dashed blue curves show the representations
for β = −10−2, −1/10, and −3/10, respectively

past on the sense that while H is finite, Ḣ almost blows up
in a finite past cosmic time.4

However, if β > β�, i.e. larger than the value correspond-
ing to a quasi-sudden singularity, the situation changes dras-
tically. For β = 1/5 and 21/100, we find that the asymptotic
behavior of H2 reads

H2 ∝ δρ−2, (4.2)

when ρ approaches ρmax. Therefore, this event takes place at
a finite scale factor and a finite cosmic time, with both H and
its cosmic time derivative blowing up. These facts highlight
the emergence of a finite big freeze singularity in the past.5

As a summary, we find that the original loitering effect
for positive κ can be substituted by a point with a mini-
mum scale factor am , where a bounce (H2 = 0 and dH2/dρ

remains finite), a past quasi-sudden singularity (H2 = 0 and
dH2/dρ nearly diverges) or a past big freeze singularity (H2

and dH2/dρ diverge) may emerge.

4.2.3 β < 0

In Fig. 4, we show the representations of κH2 as a function
of κρ for β < 0. We find that, unlike what we concluded
previously, the loitering effects (H2 ∝ δρ2) and the bouncing
solutions (H2 ∝ δρ) are robust against the decrease of β

below zero. Furthermore, we also find that the smaller the
value of β, the smaller the value of |κρ| at the loitering event
or the bounce.

4 We gave in the introduction the definition of the sudden singularity
and the other cosmological singularities related to dark energy. In our
case this singular event happens in the finite past of the Universe.
5 Please see Sect. 1 for the definition of a big freeze singularity and
the classification of the other cosmological singularities related to dark
energy. In our case this singular event happens at a finite past of the
Universe.
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H2

Fig. 5 Graphical representation of κH2 as a function of κρ for a radi-
ation dominated universe (w = 1/3) with β > 1/4. The solid, dashed,
and dotted curves represent the solutions for β = 3/10, 7/20, and
37/100, respectively. Note that the solution H2 = ρ/3, which is the
solution within R + R2 gravity (β = 1/4), is also shown in this figure

0 1 2 3 4 5

0.3

0.6

0.9
H2

Fig. 6 Graphical representation of κH2 as a function of κρ for a radi-
ation dominated universe (w = 1/3) with β > 1/4 and κ being pos-
itive. The solid blue, red, and green curves represent the solutions for
β = 7/10, 4/5, and 9/10, respectively. The dashed blue, red and green
curves represent the solutions for β = 19/20, β = 1 and β = 6/5,
respectively

4.2.4 β > 1/4

On the other hand, in Figs. 5 and 6 we show the repre-
sentations of κH2 as a function of κρ for β > 1/4 (or
α < 0) in a radiation dominated universe. The straight line
H2 = ρ/3, which represents the solution within R + R2

gravity (β = 1/4), is also exhibited. One can see that the
bouncing solutions for negative κ are robust against a change
of β. However, the loitering solutions for positive κ in the
EiBI theory become big bang solutions where H2 ∝ ρ for
large ρ. These solutions converge to H2 = ρ/3 when the
value of β approaches β ≈ 1/4.

Interestingly, we also find from the dashed blue and solid
green curves in Fig. 6 that for larger values of β, there could
be a plateau in the H2 function for positive κ , for a radiation
dominated universe. This stage may correspond to a de Sitter
inflationary expansion phase after the big bang singularity.
This inflationary phase is then followed by a classical expan-
sion described well in the context of GR. Furthermore, when

β ≥ 1, the solutions with a loitering effect are again recov-
ered (see the dashed red and dashed green curves in Fig. 6).

Before concluding, we notice that because this theory
reduces to GR at the low energy limit, all the radiation dom-
inated universe will be asymptotically flat at that limit.

5 conclusions

Since the proposal of the Born-Infeld action for classical elec-
trodynamics, modified theories of gravity inspired on such
a proposal and with an elegant determinantal structure in
their actions have been widely investigated (see Refs. [5–
11]). Despite the large amount of works in this subject, the
very interesting generalization through the addition of a pure
trace term into the gravitational Lagrangian in the Palatini
formalism has not been considered before. This modifica-
tion gives rise to the most general action constructed from
a rank two tensor that contains up to first order terms in the
curvature. Such a theory is expected to not only preserve
the great achievement of GR at low energies, but also to
generate more drastic deviations from GR than those accom-
plished within the original Born-Infeld-inspired theories at
high energies. Modified theories with this term have only
been investigated in the pure metric formalism [5] and in the
teleparallel representation [16]. The former inevitably suffers
from troublesome fourth order field equations for the metric
or from ghost instabilities [4], which suggests the need of
some alternative approach to overcome these problems. The
latter, which flees from the ghosts and results in second order
field equations, leads in most of the cases to the substitution
of the big bang by smoother cosmological singularities [49]
or a de Sitter inflationary stage [16].

Inspired by these motivations, in this paper we generalize
the EiBI theory, which is formulated within the Palatini for-
malism, by adding a pure trace term into the determinantal
Lagrangian, and analyze the cosmological solutions of this
theory by assuming a homogeneous and isotropic universe
for its largest scale. As we expect, the early cosmological
expansion to be modified as compared with GR or EiBI the-
ory, we assume that the Universe is filled with radiation. Fol-
lowing a similar approach to that proposed in Ref. [39], the
behaviors of the cosmological solutions are analyzed using
a parametric Friedmann equation.

As a summary, we find that if κ < 0, the big bang is
substituted by a bounce except for the regions of the param-
eter space 0 < β ≤ 1/4 where the big bang singularity
exists. Note that in Refs. [39–41] the authors showed that the
bouncing solutions in the EiBI theory are robust against the
changes of the Lagrangian through an additional f (R) term
or some functional extensions. On the other hand, if κ > 0,
we find that the big bang singularity can be altered by a loi-
tering effect (β ≤ 0 or β ≥ 1), a bounce (0 < β < β�),
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what we named a quasi-sudden singularity (β = β�), or a
big freeze singularity in the past (β� < β < 1/4). However,
for 1/4 ≤ β < 1, the big bang singularity remains. Most
interestingly, the big bang singularity may be followed by a
de Sitter inflationary stage for β � 1. This can be verified
by the plateau in the H2 function as shown in Fig. 6. The
inflationary phase is superseded by a standard cosmological
expansion. We summarizes our results in Table 1. Moreover,
we should emphasize that the cosmological solutions that
emerge in this theory are all stemmed from pure geometrical
effects. Only a radiation dominated universe is assumed and
there is no need of any additional fields or exotic matters to
drive these cosmological solutions.
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