1,788 research outputs found

    Murine Axial Compression Tibial Loading Model to Study Bone Mechanobiology:Implementing the Model and Reporting Results

    Get PDF
    In vivo tibial loading in mice is increasingly used to study bone adaptation and mechanotransduction. To achieve standardized and defined experimental conditions, loading parameters and animal-related factors must be considered when performing in vivo loading studies. In this review we discuss these loading and animal-related experimental conditions, present methods to assess bone adaptation, and suggest reporting guidelines. This review originated from presentations by each of the authors at the workshop “Developing Best Practices for Mouse Models of In Vivo Loading” during the Preclinical Models Section at the Orthopaedic Research Society Annual Meeting, San Diego, CA, March 2017. Following the meeting, the authors engaged in detailed discussions with consideration of relevant literature. The guidelines and recommendations in this review are provided to help researchers perform in vivo loading experiments in mice, and thus further our knowledge of bone adaptation and the mechanisms involved in mechanotransduction

    Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia

    Get PDF
    Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively. Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur

    Cycling the hot CNO : A teaching methodology

    Get PDF
    An interactive activity to teach the hot Carbon, Nitrogen and Oxygen (HCNO) cycle is proposed. Justification for why the HCNO cycle is important is included via an example of x-ray bursts. The activity allows teaching and demonstration of half-life, nuclear isotopes, nuclear reactions, protons and α-particles, and catalytic processes. Whilst the process example is specific to astrophysics it may be used to teach more broadly about catalytic processes. This practical is designed for use with 10-20 participants, with the intention that the exercise will convey nuclear physics principles in a fun and interactive manner

    Biochemical characterization of Acacia schweinfurthii serine proteinase inhibitor

    Get PDF
    One of the many control mechanisms of serine proteinases is their specific inhibition by protein proteinase inhibitors. An extract of Acacia schweinfurthii was screened for potential serine proteinase inhibition. It was successfully purified to homogeneity by precipitating with 80% (v/v) acetone and sequential chromatographic steps, including ion-exchange, affinity purifica- Q2 tion and RP-HPLC. Reducing SDS-PAGE conditions revealed an inhibitor (ASTI) consisting of two polypeptide chains A and B of approximate molecular weights of 16 and 10 kDa, respectively, and under non-reducing conditions, 26 kDa was observed. The inhibitor was shown to inhibit bovine trypsin (Ki of 3.45 nM) at an approximate molar ratio of inhibitor: trypsin (1:1). The A- and B-chains revealed complete sequences of 140 and 40 amino acid residues, respectively. Sequence similarity (70%) was reported between ASTI A-chain and ACTI A-chain (Acacia confusa) using the ClustalW. The B-chain produced a 76% sequence similarity between ASTI and Leucaena leucocephala trypsin inhibitor

    Testing the cognitive-behavioural maintenance models across DSM-5 bulimic-type eating disorder diagnostic groups: A multi-centre study

    Get PDF
    The original cognitive-behavioural (CB) model of bulimia nervosa, which provided the basis for the widely used CB therapy, proposed that specific dysfunctional cognitions and behaviours maintain the disorder. However, amongst treatment completers, only 40–50 % have a full and lasting response. The enhanced CB model (CB-E), upon which the enhanced version of the CB treatment was based, extended the original approach by including four additional maintenance factors. This study evaluated and compared both CB models in a large clinical treatment seeking sample (N = 679), applying both DSM-IV and DSM-5 criteria for bulimic-type eating disorders. Application of the DSM-5 criteria reduced the number of cases of DSM-IV bulimic-type eating disorders not otherwise specified to 29.6 %. Structural equation modelling analysis indicated that (a) although both models provided a good fit to the data, the CB-E model accounted for a greater proportion of variance in eating-disordered behaviours than the original one, (b) interpersonal problems, clinical perfectionism and low self-esteem were indirectly associated with dietary restraint through over-evaluation of shape and weight, (c) interpersonal problems and mood intolerance were directly linked to binge eating, whereas restraint only indirectly affected binge eating through mood intolerance, suggesting that factors other than restraint may play a more critical role in the maintenance of binge eating. In terms of strength of the associations, differences across DSM-5 bulimic-type eating disorder diagnostic groups were not observed. The results are discussed with reference to theory and research, including neurobiological findings and recent hypotheses

    Asteroseismology

    Full text link
    Asteroseismology is the determination of the interior structures of stars by using their oscillations as seismic waves. Simple explanations of the astrophysical background and some basic theoretical considerations needed in this rapidly evolving field are followed by introductions to the most important concepts and methods on the basis of example. Previous and potential applications of asteroseismology are reviewed and future trends are attempted to be foreseen.Comment: 38 pages, 13 figures, to appear in: "Planets, Stars and Stellar Systems", eds. T. D. Oswalt et al., Springer Verla

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Ne 21 energy levels approaching the α -particle threshold

    Get PDF
    Background: Nuclei around Ne20 exhibit an interplay of different excitations caused by different aspects of nuclear structure, including single-particle and multiparticle configurations and collective rotations. One-nucleon transfer reactions selectively probe single-particle structures in these nuclei. These nuclei are also important to astrophysics, with a number of important reactions proceeding through this mass region. Purpose: Energy levels approaching the α-particle threshold in Ne21 are of importance to nuclear structure. The Ne20(d,p)Ne21 reaction was measured and the corresponding spectroscopic nuclear information was extracted. Method: States in Ne21 were populated using the Ne20(d,p)Ne21 reaction in forward kinematics. Protons were identified in the Triangle Universities Nuclear Laboratory (TUNL) Enge split-pole spectrograph and angular distributions were extracted. Spin-party assignments were made and neutron partial widths were determined based on distorted-wave Born approximation (DWBA) analysis. Results: Several new energy levels were observed at energies of 7176, 7235, 7250, and 7337 keV, and spin-parities are reported which generally agree with previous results where literature was available. Spin and parity assignments are reported for several energy levels along with estimated neutron widths for those states above the neutron threshold (Sn=6761keV). Conclusions: Results from this study are placed in context with a review of the available literature on all known states in this energy region of Ne21

    Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    Get PDF
    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth
    corecore