360 research outputs found

    The Relationship Between Interleukin-6 in Saliva, Venous and Capillary Plasma, at Rest and in Response to Exercise

    Get PDF
    IL-6 plays a mechanistic role in conditions such as metabolic syndrome, chronic fatigue syndrome and clinical depression and also plays a major role in inflammatory and immune responses to exercise. The purpose of this study was to investigate the levels of resting and post exercise IL-6 when measured in venous plasma, saliva and capillary plasma. Five male and five females completed 2 separate exercise trials, both of which involved standardized exercise sessions on a cycle ergometer. Venous blood and saliva samples were taken immediately before and after Trial A, venous and capillary blood samples were taken immediately before and after Trial B. IL-6 values were obtained using a high-sensitivity enzyme-linked immunosorbent assay (ELISA). In Trial A venous plasma IL-6 increased significantly from 0.4. 0.14. pg/ml to 0.99 0.29. pg/ml (. P<. 0.01) while there was no increase in salivary IL-6. Venous plasma and salivary IL-6 responses were not correlated at rest, post exercise or when expressed as an exercise induced change. In Trial B venous and capillary plasma IL-6 increased significantly (venous: 0.22. ±. 0.18 to 0.74. ±. 0.28. pg/ml; capillary: 0.37. ±. 0.22 to 1.08. ±. 0.30. pg/ml (. P<. 0.01). Venous and capillary plasma responses did not correlate at rest (. r=. 0.59, P=. 0.07) but did correlate post exercise (. r=. 0.79) and when expressed as an exercise induced change (. r=. 0.71, P=. 0.02). Saliva does not appear to reflect systemic IL-6 responses, either at rest or in response to exercise. Conversely, capillary plasma responses are reflective of systemic IL-6 responses to exercise. © 2014 Elsevier Ltd

    A new deep SCUBA survey of gravitationally lensing clusters

    Full text link
    We have conducted a new deep SCUBA survey, which has targetted 12 lensing galaxy clusters and one blank field. In this survey we have detected several sub-mJy sources after correcting for the gravitational lensing by the intervening clusters. We here present the preliminary results and point out two highlights.Comment: 4 pages, 2 figures, "Multiwavelength Cosmology" Mykonos, June 2003, conference proceeding

    Neutron Stars in a Varying Speed of Light Theory

    Full text link
    We study neutron stars in a varying speed of light (VSL) theory of gravity in which the local speed of light depends upon the value of a scalar field ϕ\phi. We find that the masses and radii of the stars are strongly dependent on the strength of the coupling between ϕ\phi and the matter field and that for certain choices of coupling parameters, the maximum neutron star mass can be arbitrarily small. We also discuss the phenomenon of cosmological evolution of VSL stars (analogous to the gravitational evolution in scalar-tensor theories) and we derive a relation showing how the fractional change in the energy of a star is related to the change in the cosmological value of the scalar field.Comment: 15 pages, 2 figures. Added solutions with a more realistic equation of state. To be published in PR

    Typification and authorship of Drosera intermedia (Droseraceae)

    Get PDF
    Drosera intermedia is lectotypified with the herbarium specimen on which the type drawing in the 1798 protologue was based. The collection history of the specimen, the history of the botanical drawing as original material, and the correct nomenclatural author and publication date of the name are presented based on historical notes and literature. Additionally, the global distribution of the species is given, including the first record from Africa

    An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles

    Full text link
    The extreme solar and SEP event of 20 January 2005 is analyzed from two perspectives. Firstly, we study features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs. All emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in strong magnetic fields. Thus, protons and electrons responsible for flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays identified with pi^0-decay emission, are similar and correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600 km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred simultaneously within the flare region. We do not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo corrected. The original publication is available at http://www.springerlink.co

    Studying Millisecond Pulsars in X-rays

    Get PDF
    Millisecond pulsars represent an evolutionarily distinct group among rotation-powered pulsars. Outside the radio band, the soft X-ray range (0.1\sim 0.1--10 keV) is most suitable for studying radiative mechanisms operating in these fascinating objects. X-ray observations revealed diverse properties of emission from millisecond pulsars. For the most of them, the bulk of radiation is of a thermal origin, emitted from small spots (polar caps) on the neutron star surface heated by relativistic particles produced in pulsar acceleration zones. On the other hand, a few other very fast rotating pulsars exhibit almost pure nonthermal emission generated, most probably, in pulsar magnetospheres. There are also examples of nonthermal emission detected from X-ray nebulae powered by millisecond pulsars, as well as from pulsar winds shocked in binary systems with millisecond pulsars as companions. These and other most important results obtained from X-ray observations of millisecond pulsars are reviewed in this paper, as well as results from the search for millisecond pulsations in X-ray flux of the radio-quite neutron star RX J1856.5-3754

    Auxinic herbicides, mechanisms of action, and weed resistance: A look into recent plant science advances

    Full text link
    Auxin governs dynamic cellular processes involved at several stages of plant growth and development. In this review, we discuss the mechanisms employed by auxin in light of recent scientific advances, with a focus on synthetic auxins as herbicides and synthetic auxin resistance mechanisms. Two auxin receptors were reported. The plasma membrane receptor ABP1 (Auxin Binding Protein 1) alters the structure and arrangement of actin filaments and microtubules, leading to plant epinasty and reducing peroxisomes and mitochondria mobility in the cell environment. The second auxin receptor is the gene transcription pathway regulated by the SCFTir/AFB ubiquitination complex, which destroys transcription repressor proteins that interrupt Auxin Response Factor (ARF) activation. As a result mRNA related with Abscisic Acid (ABA) and ethylene are transcribed, producing high quantities of theses hormones. Their associated action leads to high production of Reactive Oxygen Species (ROS), leading to tissue and plant death. Recently, another ubiquitination pathway which is described as a new auxin signaling route is the F-box protein S-Phase Kinase-Associated Protein 2A (SKP2A). It is active in cell division regulation and there is evidence that auxin herbicides can deregulate the SKP2A pathway, which leads to severe defects in plant development. In this discussion, we propose that SFCSKP2A auxin binding site alteration could be a new auxinic herbicide resistance mechanism, a concept which may contribute to the current progress in plant biology in its quest to clarify the many questions that still surround auxin herbicide mechanisms of action and the mechanisms of weed resistance

    Flux-rope twist in eruptive flares and CMEs : due to zipper and main-phase reconnection

    Get PDF
    Funding: UK Science and Technology Facilities CouncilThe nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.PostprintPublisher PDFPeer reviewe
    corecore